$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin{align} \sum_{x = 0}^{n}x{N_{1} \choose n - x}{N_{2} \choose x} & = \sum_{x = 0}^{\infty}x{N_{2} \choose x}\ \overbrace{% \oint_{\verts{z} = 1^{-}}{\pars{1 + z}^{N_{1}} \over z^{n - x + 1}} \,{\dd z \over 2\pi\ic}}^{\ds{N_{1} \choose n - x}} \\[5mm] & = \oint_{\verts{z} = 1^{-}}{\pars{1 + z}^{N_{1}} \over z^{n + 1}}\ \overbrace{% \sum_{x = 0}^{\infty}{N_{2} \choose x}x\,z^{x}} ^{\ds{N_{2}\,z\,\pars{1 + z}^{N_{2} - 1}}}\ \,{\dd z \over 2\pi\ic} \\[5mm] & = N_{2}\oint_{\verts{z} = 1^{-}}{\pars{1 + z}^{N_{1} + N_{2} - 1} \over z^{n}} \,{\dd z \over 2\pi\ic} = \bbx{\ds{N_{2}{N_{1} + N_{2} - 1 \choose n - 1}}} \end{align}