He realizado una regresión sobre los condados de EE.UU. y estoy comprobando si hay colinealidad en mis variables "independientes". Belsley, Kuh y Welsch Diagnóstico de regresión sugiere observar el Índice de Condición y las Proporciones de Descomposición de la Varianza:
library(perturb)
## colldiag(, scale=TRUE) for model with interaction
Condition
Index Variance Decomposition Proportions
(Intercept) inc09_10k unins09 sqmi_log pop10_perSqmi_log phys_per100k nppa_per100k black10_pct hisp10_pct elderly09_pct inc09_10k:unins09
1 1.000 0.000 0.000 0.000 0.000 0.001 0.002 0.003 0.002 0.002 0.001 0.000
2 3.130 0.000 0.000 0.000 0.000 0.002 0.053 0.011 0.148 0.231 0.000 0.000
3 3.305 0.000 0.000 0.000 0.000 0.000 0.095 0.072 0.351 0.003 0.000 0.000
4 3.839 0.000 0.000 0.000 0.001 0.000 0.143 0.002 0.105 0.280 0.009 0.000
5 5.547 0.000 0.002 0.000 0.000 0.050 0.093 0.592 0.084 0.005 0.002 0.000
6 7.981 0.000 0.005 0.006 0.001 0.150 0.560 0.256 0.002 0.040 0.026 0.001
7 11.170 0.000 0.009 0.003 0.000 0.046 0.000 0.018 0.003 0.250 0.272 0.035
8 12.766 0.000 0.050 0.029 0.015 0.309 0.023 0.043 0.220 0.094 0.005 0.002
9 18.800 0.009 0.017 0.003 0.209 0.001 0.002 0.001 0.047 0.006 0.430 0.041
10 40.827 0.134 0.159 0.163 0.555 0.283 0.015 0.001 0.035 0.008 0.186 0.238
11 76.709 0.855 0.759 0.796 0.219 0.157 0.013 0.002 0.004 0.080 0.069 0.683
## colldiag(, scale=TRUE) for model without interaction
Condition
Index Variance Decomposition Proportions
(Intercept) inc09_10k unins09 sqmi_log pop10_perSqmi_log phys_per100k nppa_per100k black10_pct hisp10_pct elderly09_pct
1 1.000 0.000 0.001 0.001 0.000 0.001 0.003 0.004 0.003 0.003 0.001
2 2.988 0.000 0.000 0.001 0.000 0.002 0.030 0.003 0.216 0.253 0.000
3 3.128 0.000 0.000 0.002 0.000 0.000 0.112 0.076 0.294 0.027 0.000
4 3.630 0.000 0.002 0.001 0.001 0.000 0.160 0.003 0.105 0.248 0.009
5 5.234 0.000 0.008 0.002 0.000 0.053 0.087 0.594 0.086 0.004 0.001
6 7.556 0.000 0.024 0.039 0.001 0.143 0.557 0.275 0.002 0.025 0.035
7 11.898 0.000 0.278 0.080 0.017 0.371 0.026 0.023 0.147 0.005 0.038
8 13.242 0.000 0.001 0.343 0.006 0.000 0.000 0.017 0.129 0.328 0.553
9 21.558 0.010 0.540 0.332 0.355 0.037 0.000 0.003 0.003 0.020 0.083
10 50.506 0.989 0.148 0.199 0.620 0.393 0.026 0.004 0.016 0.087 0.279
?HH::vif
sugiere que los VIF >5 son problemáticos:
library(HH)
## vif() for model with interaction
inc09_10k unins09 sqmi_log pop10_perSqmi_log phys_per100k nppa_per100k black10_pct hisp10_pct
8.378646 16.329881 1.653584 2.744314 1.885095 1.471123 1.436229 1.789454
elderly09_pct inc09_10k:unins09
1.547234 11.590162
## vif() for model without interaction
inc09_10k unins09 sqmi_log pop10_perSqmi_log phys_per100k nppa_per100k black10_pct hisp10_pct
1.859426 2.378138 1.628817 2.716702 1.882828 1.471102 1.404482 1.772352
elderly09_pct
1.545867
Mientras que la de John Fox Diagnóstico de regresión sugiere mirar la raíz cuadrada del VIF:
library(car)
## sqrt(vif) for model with interaction
inc09_10k unins09 sqmi_log pop10_perSqmi_log phys_per100k nppa_per100k black10_pct hisp10_pct
2.894589 4.041025 1.285917 1.656597 1.372987 1.212898 1.198428 1.337705
elderly09_pct inc09_10k:unins09
1.243879 3.404433
## sqrt(vif) for model without interaction
inc09_10k unins09 sqmi_log pop10_perSqmi_log phys_per100k nppa_per100k black10_pct hisp10_pct
1.363608 1.542121 1.276251 1.648242 1.372162 1.212890 1.185108 1.331297
elderly09_pct
1.243329
En los dos primeros casos (en los que se sugiere un límite claro), el modelo es problemático sólo cuando se incluye el término de interacción.
El modelo con el término de interacción ha sido hasta ahora mi especificación preferida.
Tengo dos preguntas, dada esta peculiaridad de los datos:
- ¿Un término de interacción siempre empeora la colinealidad de los datos?
- Dado que las dos variables sin el término de interacción no superan el umbral, ¿es correcto utilizar el modelo con el término de interacción? Específicamente, la razón por la que creo que esto podría estar bien es que estoy utilizando el método de King, Tomz y Wittenberg (2000) para interpretar los coeficientes (modelo binomial negativo), donde generalmente mantengo los otros coeficientes en la media, y luego interpreto lo que sucede con las predicciones de mi variable dependiente cuando muevo
inc09_10k
yunins09
de forma independiente y conjunta.