Vamos
$$I=\int_{0}^{\infty}{1\over x^4+x^2+1}dx\tag1$$ $$J=\int_{0}^{\infty}{1\over x^8+x^4+1}dx\tag2$$
Demostrar que $I=J={\pi \over 2\sqrt3}$
Sub: $x=\tan{u}\rightarrow dx=\sec^2{u}du$
$x=\infty \rightarrow u={\pi\over 2}$, $x=0\rightarrow u=0$
Reescribir $(1)$
$$I=\int_{0}^{\infty}{1\over (1+x^2)^2-x^2}dx$$ entonces
$$\int_{0}^{\pi/2}{\sec^2{u}\over \sec^4{u}-\tan^2{u}}du\tag3$$
Simplificado para
$$I=\int_{0}^{\pi/2}{1\over \sec^2{u}-\sin^2{u}}du\tag4$$
A continuación, a
$$I=2\int_{0}^{\pi/2}{1+\cos{2u}\over (2+\sin{2u})(2-\sin{2u})}du\tag5$$
Consejos sobre qué hacer a continuación?
Re-edición (Pista de Marco)
$${1\over x^8+x^4+1}={1\over 2}\left({x^2+1\over x^4+x^2+1}-{x^2-1\over x^4-x^2+1}\right)$$
$$M=\int_{0}^{\infty}{x^2+1\over x^4+x^2+1}dx=\int_{0}^{\infty}{x^2\over x^4+x^2+1}dx+\int_{0}^{\infty}{1\over x^4+x^2+1}dx={\pi\over \sqrt3}$$
$$N=\int_{0}^{\infty}{x^2-1\over x^4-x^2+1}dx=0$$
$$J=\int_{0}^{\infty}{1\over x^8+x^4+1}dx={1\over 2}\left({\pi\over \sqrt3}-0\right)={\pi\over 2\sqrt3}.$$