3 votos

¿Todas las pruebas utilizan la misma información?

Esta pregunta es vaga y podría estar cerrada, pero también siento que es increíblemente importante para las matemáticas y la forma en que abordamos los problemas. Especialmente los problemas difíciles. En concreto, el concepto de información.

Uno de los principios fundamentales de las matemáticas es que "no hay almuerzo gratis"; si una prueba pretende demostrar algo, pero no utiliza información/pasos cruciales, entonces hay un error en alguna parte.

Por eso solía creer que, aunque las diferentes pruebas de un resultado pudieran parecer diferentes, todas eran esencialmente iguales en algún nivel: todas encontraban las partes cruciales y simplemente las combinaban de forma diferente.

Sin embargo, cada vez da más la sensación de que las pruebas son fundamentalmente diferentes. Uno puede usar los axiomas A y B de ZFC, y otro los axiomas B y C de ZFC, mientras que A no se sigue de B y C.

¿Hay alguna forma de que este concepto sea más riguroso y sea verdadero o falso en ese sentido encapsulado?

Si las pruebas son las mismas en algún sentido informativo, entonces siempre empezamos de la misma manera recogiendo las partes necesarias hasta que hierve. Pero si no lo son, esto justifica que se desprecie mucho más el trabajo de los demás como posiblemente innecesario.

2voto

Echa un vistazo a las primeras páginas del justamente famoso libro de Martin Aigner y Günter Ziegler Pruebas de El Libro .

El primer ejemplo que dan de un grupo de pruebas elegantes es el de SEIS pruebas diferentes de la infinidad de primos.

En este caso, es evidente que no puede decir que aunque las seis pruebas diferentes del resultado puedan parecer diferentes, todas son esencialmente iguales en algún nivel. Más bien tenemos diferentes ideas de prueba, diferentes aparatos conceptuales, que se ponen en práctica en las diferentes pruebas. Y de este modo, las diferentes pruebas establecen diferentes conexiones con el paisaje circundante. Y ese tipo de conexiones generan el tipo de comprensión enriquecida que queremos de un conjunto de buenas pruebas.

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X