No pude encontrar ninguna respuesta en internet así que vine aquí, estoy tratando de entender cómo $2^{n\log_2n}=n^n$
Sé que $n^n=e^{\ln{n^n}}=e^{n\ln{n}}$
Hasta ahora he conseguido $2^{n\log_2n}=2^{\log_2{n^n}}=2^{\frac{\ln{n^n}}{\ln2}}$
Entonces estoy atascado, ni siquiera estoy seguro de ir por el buen camino..
Gracias por adelantado