En el capítulo 4.9 del libro "Measures of Noncompactness and Condensing Operators" (Vol. 55 de Operator Theory: Advances and Applications), los autores mencionan la propiedad "compacidad en la medida". Dicen
Aquí compacidad en la medida significa compacidad en el espacio normado $S$ de todas las funciones medibles y finitas en casi todas partes $x$ , dotado de la norma
$$||x|| = \inf_{s>0} \{s + \text{mes} \{t \, : \, |x(t)| \geq s\}\}$$
Dónde " $\text{mes} \, D$ " es la medida del conjunto $D$ .
Mis preguntas son: ¿Esta propiedad tiene otros nombres? ¿Y hay buenas fuentes en inglés que la mencionen?
Las únicas fuentes que he encontrado que lo utilizan son documentos de N. A. Erzakova, no todos traducidos al inglés, y posiblemente un documento en ruso de P. P. Zabreiko.