Dejemos que $x = \sqrt{a_1^2+a_2^2+a_3^2}$ . Puede comprobar que $C^3 = -(a_1^2+a_2^2+a_3^2)C = -x^2C$ .
Por lo tanto, $C^{2m+1} = (-1)^mx^{2m}C$ y $C^{2m} = (-1)^{m-1}x^{2m-2}C^2$ .
Por lo tanto, $e^C = \displaystyle\sum_{n=0}^{\infty}\dfrac{1}{n!}C^n = I + \sum_{m=0}^{\infty}\dfrac{1}{(2m+1)!}C^{2m+1} + \sum_{m=1}^{\infty}\dfrac{1}{(2m)!}C^{2m}$
$= \displaystyle I + \sum_{m=0}^{\infty}\dfrac{(-1)^mx^{2m}}{(2m+1)!}C + \sum_{m=1}^{\infty}\dfrac{(-1)^{m-1}x^{2m-2}}{(2m)!}C^{2}$
$= \displaystyle I + \dfrac{1}{x}\sum_{m=0}^{\infty}\dfrac{(-1)^mx^{2m+1}}{(2m+1)!}C - \dfrac{1}{x^2}\sum_{m=1}^{\infty}\dfrac{(-1)^{m}x^{2m}}{(2m)!}C^{2}$
$= I + \dfrac{\sin x}{x}C + \dfrac{1-\cos x}{x^2}C^2$