14 votos

Integral definida que contiene funciones logarítmicas y cot

Considere la siguiente integral

$$c=\int_0^{\pi/2}\log(1-x\cot x)\, \mathrm{d}x\approx-3.35333726288947201778500718670823032.$$

Sospecho que se puede calcular analíticamente porque al expandir el $\log$ función, $$ c=\sum_{k=1}^{\infty}\frac1k\int_0^{\pi/2}(x \cot x)^k\, \mathrm{d}x $$ se puede integrar término a término, aunque de forma complicada (combinación de logaritmos y $\zeta$ -funciones) $$ \int_0^{\pi/2}x \cot x\, \mathrm{d}x=\frac{1}{2} \pi \log2,\\ \int_0^{\pi/2}x^2 \cot^2 x\, \mathrm{d}x=-\frac{\pi ^3}{24}+\pi \log2,\\ \int_0^{\pi/2}x^3 \cot^3 x\,\mathrm{d}x=-\frac{\pi^3}{16} (1+2\log 2)+\frac{3 \pi}{16} (8\log 2+3 \zeta(3)), $$ y así sucesivamente.

Para poner en antecedentes esta cuestión, la integral tiene cierta importancia en la física teórica. Entra en la asintótica de alta densidad del factor de renormalización de cuasipartículas del gas de electrones homogéneo 3D, véase la ec. 35 en Phys. Rev. B 70, 035111 (2004) o las ecs. 8 y 9 en Phys. Rev. 120, 2041 (1960): $$ Z_{qp}=1+\frac{c}{\pi^2}\alpha r_s$$

Sin embargo, como no hay dependencia paramétrica, y como es fácil de calcular numéricamente, nadie se preocupó de encontrar la forma analítica. Sin embargo, me parece que es un pequeño y encantador problema.

10voto

Yuri Negometyanov Puntos 593

$\color{brown}{\textbf{Alternative expressions for the integral.}}$

En primer lugar, $$I = \int\limits_0^{\Large^\pi\hspace{-1pt}/_2}\ln(1-x\cot x)\,\mathrm dx = \int\limits_0^{\Large^\pi\hspace{-1pt}/_2}\ln(\sin x - x\cos x)\,\mathrm dx - \int\limits_0^{\Large^\pi\hspace{-1pt}/_2}\ln(\sin x)\,\mathrm dx = \dfrac\pi2\ln2 +I_1,$$

donde $I_1$ permite la integración por partes: $$I_1 = \int\limits_0^{\Large^\pi\hspace{-1pt}/_2}\ln(\sin x - x\cos x)\,\mathrm dx = x\ln(\sin x-x\cos x)\bigg|_{\ 0}^{\Large^\pi\hspace{-1pt}/_2} - \int\limits_0^{\Large^\pi\hspace{-1pt}/_2}\dfrac{x^2\sin x}{\sin x - x\cos x}\,\mathrm dx,$$ $$ I_1 =-\int\limits_0^{\Large^\pi\hspace{-1pt}/_2}\dfrac{x^2\sin x}{\sin x- x\cos x}\,\mathrm dx = - \int\limits_0^{\Large^\pi\hspace{-1pt}/_2}\dfrac{x^2}{1-x\cot x}\,\mathrm dx = - J_{21},\tag1$$ donde

$$J_{mn} = \int\limits_0^{\Large^\pi\hspace{-1pt}/_2}\dfrac{x^m}{(1-x\cot x)^n}\,\mathrm dx.\tag2$$

Por otro lado, $$J_{21} = \int\limits_0^{\Large^\pi\hspace{-1pt}/_2}\dfrac{x^2(1-x\cot x + x\cot x)}{1-x\cot x}\,\mathrm dx = \dfrac{\pi^3}{24} + I_2,$$ donde $$I_2 = \int\limits_0^{\Large^\pi\hspace{-1pt}/_2}\dfrac{x^3\cot x}{1 - x\cot x}\,\mathrm dx = \int\limits_0^{\Large^\pi\hspace{-1pt}/_2}\dfrac{x^3}{\tan x - x}\,\mathrm dx.\tag3$$

Fórmulas $(3)$ no son adecuados para los cálculos numéricos.

Pero la integración por partes es posible, $$I_2 = \dfrac14\int\limits_0^{\Large^\pi\hspace{-1pt}/_2}\dfrac{1}{\tan x - x}\,\mathrm dx^4 = \dfrac14\dfrac{x^4}{\tan x-x}\bigg|_{\,0}^{\Large^\pi\hspace{-1pt}/_2} + \dfrac14\int\limits_0^{\Large^\pi\hspace{-1pt}/_2}\dfrac{x^4(1+\tan^2x -1)}{(\tan x - x)^2}\,\mathrm dx,$$ $$ I_2 = \dfrac14\int\limits_0^{\Large^\pi\hspace{-1pt}/_2}\dfrac{x^4}{(1 - x\cot x)^2}\,\mathrm dx = \dfrac14 J_{42},$$

$$I = \dfrac\pi2\ln2 - \dfrac{\pi^3}{24} - \dfrac14 J_{42}.\tag4$$

Fórmula $(4)$ proporciona cálculos numéricos adecuados vía Wolfram Alpha mediante la expresión

Expression

con el resultado

Result

y la posterior construcción de la serie en las funciones elementales a través de las transformaciones en forma de $$ J_{42} = \int\limits_0^{\Large^\pi\hspace{-1pt}/_2}\dfrac{x^4((1 - x\cot x)^2 + 2x\cot x(1 - x\cot x) + x^2\cot^2 x) }{(1 - x\cot x)^2}\,\mathrm dx\\ = \int\limits_0^{\Large^\pi\hspace{-1pt}/_2}\left(x^4 + 2\,\dfrac{x^5\cot x}{1-x\cot x} + \dfrac{x^6\cot^2x}{(1 - x\cot x)^2}\right)\,\mathrm dx\\ = \int\limits_0^{\Large^\pi\hspace{-1pt}/_2} x^4\,\mathrm dx + \int\limits_0^{\Large^\pi\hspace{-1pt}/_2}\left(\dfrac{2x^5\cot x}{1-x\cot x} + \dfrac{x^6\cot^2x}{(1 - x\cot x)^2}\right)\,\mathrm dx,$$ $$J_{42} = \dfrac{\pi^5}{160} + I_3 + I_4,\tag5$$ donde $$I_3 = 2\int\limits_0^{\Large^\pi\hspace{-1pt}/_2}\dfrac{x^5\cot x}{1-x\cot x} \,\mathrm dx = 2\int\limits_0^{\Large^\pi\hspace{-1pt}/_2}\dfrac{x^5}{\tan x - x}\,\mathrm dx = \dfrac13\int\limits_0^{\Large^\pi\hspace{-1pt}/_2}\dfrac{1}{\tan x - x}\,\mathrm dx^6\\ = \dfrac13\dfrac{x^6}{\tan x-x}\bigg|_{\,0}^{\Large^\pi\hspace{-1pt}/_2} + \dfrac13\int\limits_0^{\Large^\pi\hspace{-1pt}/_2}\dfrac{x^6(1+\tan^2x -1)}{(\tan x - x)^2}\,\mathrm dx = \dfrac13 J_{62},$$ $$I_4 = \int\limits_0^{\Large^\pi\hspace{-1pt}/_2}\dfrac{x^6\cot^2x}{(1 - x\cot x)^2}\,\mathrm dx = \int\limits_0^{\Large^\pi\hspace{-1pt}/_2}\dfrac{x^6}{(\tan x - x)^2} \,\mathrm dx = \dfrac17\int\limits_0^{\Large^\pi\hspace{-1pt}/_2}\dfrac{1}{(\tan x - x)^2} \,\mathrm dx^7\\ = \dfrac27\dfrac{x^7}{(\tan x-x)^3}\bigg|_{\,0}^{\Large^\pi\hspace{-1pt}/_2} + \dfrac27\int\limits_0^{\Large^\pi\hspace{-1pt}/_2}\dfrac{x^7(1+\tan^2x -1)}{(\tan x - x)^3}\,\mathrm dx = \dfrac27\int\limits_0^{\Large^\pi\hspace{-1pt}/_2}\dfrac{x^7\cot x}{(1 - x\cot x)^3}\,\mathrm dx\\ = \dfrac27\int\limits_0^{\Large^\pi\hspace{-1pt}/_2}\dfrac{x^6(1 - (1 - x\cot x))}{(1 - x\cot x)^3}\,\mathrm dx =\dfrac27(J_{63}-J_{62}),$$

Por lo tanto,

$$I = \dfrac\pi2\ln2 - \dfrac{\pi^3}{24} - \dfrac{\pi^5}{640} - \dfrac1{84}J_{62} - \dfrac1{14}J_{63}.\tag6$$

Cálculos numéricos mediante Mathcad Alpha mediante la fórmula $(6)$

Formula (6)

conduce al mismo resultado, lo que confirma la corrección del planteamiento.

$\color{brown}{\textbf{Recurrence relations.}}$

Para la arbitrariedad $m,n$ $$ J_{mn} = \int\limits_0^{\Large^\pi\hspace{-1pt}/_2}\,(x\cot x + (1-x\cot x))^n \dfrac{x^m}{(1 - x\cot x)^n}\,\mathrm dx = \int\limits_0^{\Large^\pi\hspace{-1pt}/_2}\sum\limits_{k=0}^n\binom nk\dfrac{x^{m+k}\cot^k x}{(1 - x\cot x)^k}\,\mathrm dx = \dfrac{\pi^{m+1}}{(m+1)2^{m+1}} + \sum\limits_{k=1}^n\dfrac{\dbinom nk}{m+k+1} \int\limits_0^{\Large^\pi\hspace{-1pt}/_2}\dfrac{\mathrm dx^{m+k+1}}{(\tan x - x)^k} = \dfrac{\pi^{m+1}}{(m+1)2^{m+1}}\\ + \sum\limits_{k=1}^n\dfrac{\dbinom nk}{m+k+1} \left(\dfrac{x^{m+k+1}}{(\tan x - x)^{k}}\bigg|_{\,0}^{\Large^\pi\hspace{-1pt}/_2} + k\int\limits_0^{\Large^\pi\hspace{-1pt}/_2}\dfrac{x^{m+k+1}(1+\tan^2x-1)}{(\tan x-x)^{k+1}}\,\mathrm dx\right)\\ = \dfrac{\pi^{m+1}}{(m+1)2^{m+1}} + \sum\limits_{k=1}^n\dfrac{k}{m+k+1} \dbinom nk \int\limits_0^{\Large^\pi\hspace{-1pt}/_2}\dfrac{x^{m+2}(x\cot x)^{k-1}}{(1 -x\cot x)^{k+1}}\,\mathrm dx\\ = \dfrac{\pi^{m+1}}{(m+1)2^{m+1}} + \sum\limits_{k=1}^n\dfrac{k}{m+k+1} \dbinom nk \int\limits_0^{\Large^\pi\hspace{-1pt}/_2}\dfrac{x^{m+2}(1-(1-x\cot x))^{k-1}}{(1 -x\cot x)^{k+1}}\,\mathrm dx\\ = \dfrac{\pi^{m+1}}{(m+1)2^{m+1}} + \sum\limits_{k=1}^n\dfrac{k}{m+k+1} \dbinom nk \sum\limits_{j=0}^{k-1}(-1)^{k-1-j}\dbinom{k-1}j J_{m+2,\,j+2},$$

$$J_{mn} = \dfrac{\pi^{m+1}}{(m+1)2^{m+1}} + \sum\limits_{j=0}^{n-1} F_{j} J_{m+2,\,j+2},\tag7$$

donde

$$F_{j} = \sum\limits_{k=j+1}^n (-1)^{k-1-j} \dfrac{k}{m+k+1}\dbinom nk \dbinom{k-1}j.\tag8 $$

Si $(m,n)=(2,1),\ $ entonces $$F_{0} = \sum\limits_{k=1}^1 (-1)^{k-1} \dfrac{k}{2+k+1}\dbinom1k \dbinom{k-1}0 =\dfrac14,$$ $$J_{21} = \dfrac{\pi^{3}}{3\cdot2^3} + \sum\limits_{j=0}^0 F_{j} J_{4,\,j+2} = \dfrac{\pi^{3}}{24} + J_{42}.$$

Si $(m,n)=(4,2),\ $ entonces $$F_{0} = \sum\limits_{k=1}^2 (-1)^{k-1} \dfrac{k}{4+k+1}\dbinom2k \dbinom{k-1}0 =\dfrac13 - \dfrac27 = \dfrac{1}{21},$$ $$F_{1} = \sum\limits_{k=2}^2 (-1)^{k} \dfrac{k}{4+k+1}\dbinom2k \dbinom{k-1}1 =\dfrac27,$$ $$J_{42} = \dfrac{\pi^{5}}{5\cdot2^5} + \sum\limits_{j=0}^1 F_{j} J_{2,\,j+2} = \dfrac{\pi^5}{160} + \dfrac1{21}J_{62} + \dfrac27J_{63}.$$

Asimismo, , $$J_{62} = \dfrac{\pi^7}{896}+\dfrac1{36}J_{82}+\dfrac29J_{83}\tag9$$ (véase también Prueba de Wolfram Alpha ).

J62 Test

Además de , $$J_{63} = \dfrac{\pi^7}{896}+\dfrac1{120}J_{82} + \dfrac1{15}J_{83} + \dfrac3{20}J_{84}.\tag{10}$$

$\color{brown}{\textbf{Simple series.}}$

Los resultados obtenidos no son la mejor manera de obtener las series requeridas de la longitud arbitraria.

$$\boxed{ \begin{matrix} I & = & -3.35333726288947201778500718670823032009876022464933939598 \\ \frac\pi2\ln2 & = &1.088793045151801065250344449118806973669291850184643147162 \\ J_{21} & = & 4.442130308041273083035351635930890531086461245854584994170 \\ \frac{\pi^3}{24} & = & 1.291928195012492507311513127795891466759387023578546153922 \\ J_{42} & = & 12.60080845211512230289535403253999625730829688910415536099 \\ \frac{\pi^5}{160} & = & 1.912623029908009082892133187771472540501879416425468690959 \\ J_{62} & = & 9.357325953756236734147158157553707227832359838953032605558 \\ J_{63} & = & 35.84909465209885681432007993043088180418373451454989791084 \\ \frac{\pi^7}{896} & = & 3.370862977429455432493534032446475258836420173320761453966 \\ J_{82} & = & 13.21743446830609099759197972403428192140938899336281280188 \\ J_{83} & = & 25.28690408493225448274231109747825862030555487117486858192 \\ J_{84} & = & 102.2743092725712233044348622015074565154951081384648503713 \\ \end{matrix}}$$

Por otro lado, el uso de la simple serie Laurent para la función $$g(y) = \dfrac{35}{1-y\sqrt{15}\cot y\sqrt{15}} = \dfrac7{y^2}-\sum\limits_{i=0}^\infty c_iy^{2i}\tag{11}$$

g(y), Laurent series

da series evidentemente convergentes $$J_{21} = \dfrac1{35}\int\limits_0^{\Large^\pi\hspace{-1pt}/_2} \left(7 - \sum\limits_{i=0}^\infty c_i\left(\dfrac{x^2}{15}\right)^{i+1}\right)\,\mathrm dx,$$

$$J_{21} = \dfrac32\pi - \dfrac3{14}\pi\sum\limits_{i=0}^\infty \dfrac{c_i}{2i+3}\left(\dfrac{\pi^2}{60}\right)^{i+1}\,\mathrm dx,\tag{12}$$

en el que el primer $8$ términos proporcionan la precisión de $8$ dígitos decimales.

3voto

stocha Puntos 41

No es la respuesta pero es demasiado larga para un comentario : Un "ansatz" para encontrar una reformulación de la integral es:

1.) Considera: $$\mathcal{I}\left( k \right) = \int (x \cot (x))^k \, dx$$ 2.) Establecer $s'(x)=\cot ^k(x)$ y $v(x)=x^k$

3.) Realizar una integración parcial: $$\int \frac{\partial (s(x) v(x))}{\partial x} \, dx=\int v(x) s'(x) \ \, dx+\int s(x) v'(x) \, dx$$ para reducir el poder de $v(x)=x^k$

4.) Para $$\mathcal{J}\left( k \right) =\int \cot ^k(x) \, dx$$ utilice Tunk-Fey para reducir la potencia k bajo la integral.

5.) Recoge los términos resultantes $-\frac{\cot ^{n-1}(x)}{n-1}$ a una suma infinita.

6.) Utilizar para la expresión:

$$ \int (x^{p} (\sum_{k} ...+...\int(\cot (y))^p\, dy)) \, dx$$ la fórmula en la Tabla de Integrales, Series y Productos de Gradshteyn y Ryzhik (2007) dada por la Ecuación (3.748.2).

Editar : ¡Lo he validado numéricamente para la suma sobre k=1...2 y ha funcionado!

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X