Si $\displaystyle A = \int^{1}_{0}x^{\frac{7}{2}}(1-x)^{\frac{5}{2}}dx$ y $\displaystyle B = \int^{1}_{0}\frac{x^{\frac{3}{2}}(1-x)^{\frac{7}{2}}}{(x+3)^8}dx\;,$ entonces el valor de $AB^{-1} = $
Intento: he intentado utilizar la función gamma $\displaystyle \int^{1}_{0}x^m(1-x)^ndx = \frac{(m-1)!\cdot (n-1)!}{(m+n-1)!}$
así que $\displaystyle A=\int^{1}_{0}x^{\frac{7}{2}}(1-x)^{\frac{5}{2}}dx = \int^{1}_{0}x^{\frac{5}{2}}(1-x)^{\frac{7}{2}}dx = \frac{(\frac{3}{2})!\cdot (\frac{5}{2})!}{5!}$
Quiero ir más allá, ¿podría alguien ayudarme?