\def\e{\mathrm{e}} Se demostrará que \lim_{n \to ∞} \left( \frac{1}{n} \sum_{j = 1}^n nP_j - \frac{1}{n} \sum_{j = 1}^n \frac{\e^{x_j}}{\smash[b]{\displaystyle 1 + \frac{1}{n} \sum_{k = 1}^n \e^{x_k}}} \right) = \color{red}{-1}.
Denote y_j = \e^{x_j} , \displaystyle T_n = \frac{1}{n} \sum_{j = 1}^n y_j . Desde |x_j| \leqslant \overline{M} para todos j entonces existe M > 0 tal que 0 \leqslant y_j \leqslant M para todos j . Por lo tanto, para cualquier j , 0 \leqslant \frac{\e^{x_j}}{\displaystyle 1 + \frac{1}{n} \sum_{k = 1}^n \e^{x_k}} = \frac{y_j}{1 + T_n} \leqslant y_j \leqslant M, \quad \forall n \in \mathbb{N}_+ entonces 0 = \lim_{n \to ∞} \frac{1}{n} · \lim_{n \to ∞} \left( nP_j - \frac{y_j}{1 + T_n} \right) = \lim_{n \to ∞} \left( P_j - \frac{1}{n} · \frac{y_j}{1 + T_n} \right) = P_j, lo que implica 0 = \lim_{n \to ∞} \left( nP_j - \frac{y_j}{1 + T_n} \right) = -y_j \lim_{n \to ∞} \frac{1}{1 + T_n}, entonces T_n > 0 \Rightarrow \lim\limits_{n \to ∞} T_n = +\infty . Por lo tanto, \begin{align*} &\mathrel{\phantom{=}}{} \lim_{n \to ∞} \left( \frac{1}{n} \sum_{j = 1}^n nP_j - \frac{1}{n} \sum_{j = 1}^k \frac{\e^{x_j}}{\smash[b]{\displaystyle 1 + \frac{1}{n} \sum_{k = 1}^n \e^{x_k}}} \right) = -\lim_{n \to ∞} \frac{1}{n} \sum_{j = 1}^n \frac{\e^{x_j}}{\displaystyle 1 + \frac{1}{n} \sum_{k = 1}^n \e^{x_k}}\\ &= -\lim_{n \to ∞} \frac{\displaystyle \frac{1}{n} \sum_{j = 1}^n \e^{x_j}}{\displaystyle 1 + \frac{1}{n} \sum_{k = 1}^n \e^{x_k}} = -\lim_{n \to ∞} \frac{\displaystyle \frac{1}{n} \sum_{j = 1}^n y_j}{\displaystyle 1 + \frac{1}{n} \sum_{k = 1}^n y_k} = -\lim_{n \to ∞} \frac{T_n}{1 + T_n} = -1. \end{align*}