Demostrar que si $|x-x_0|<\min\left(\dfrac{\varepsilon}{2\left(|y_0|+1\right)},1\right)\quad$ y $\quad|y-y_0|<\dfrac{\varepsilon}{2\left(|x_0|+1\right)}$ entonces $|xy -x_0y_0|<\varepsilon$ .
\begin{align} |y-y_0| &< \frac{\varepsilon}{2(|x_0|+1)}\\ |y-y_0|(|x_0|+1)&< \varepsilon/2\\ |y-y_0|(|x_0|+|x-x_0|)&< \varepsilon/2\\ |y-y_0||x_0+(x-x_0)|&<\varepsilon/2\\ |y-y_0||x|&<\varepsilon/2\\ |xy-xy_0|&<\varepsilon/2\\ |xy-xy_0|-|x-x_0|&<\varepsilon/2 \end{align}
y
\begin{align} |x-x_0|&<\frac{\varepsilon}{2(|y_0|+1)}\\ (|y_0)|+1)|x-x_0|&<\varepsilon/2\\ |y_0||x-x_0|+|x-x_0|&<\varepsilon/2\\ |y_0x-y_0x_0|+|x-x_0|&<\varepsilon/2\\ \end{align}
Sumando el primer y el segundo resultado: \begin{align} |xy-xy_0|-|x-x_0|+|y_0x-y_0x_0|+|x-x_0|&<\varepsilon\\ |xy-xy_0|+|y_0x-y_0x_0|<\varepsilon\\ |(xy-xy_0)+(y_0x-x_0y_0)|<\varepsilon \\|xy-x_0y_0|<\varepsilon \end{align}