F(x,y,z) = (x + y')(x + y)(xz')
\= (xx) + (xy) + (xy')+(y'y)(xz')
\= [x + (xy) + (xy') + 0 ] (xz')
\= [x + x(y + y') + 0] (xz')
\= [x + x(1) + 0] (xz')
\= [x + x + 0] (xz')
\= [x + x] (xz')
\= x*(xz')
\= (xx)*z'
\= xz'
xz' es mi respuesta final.