1 votos

La representación de Weierstrass-Enneper, el mapa de Gauss

Lema: Dejemos que $x:S\to\mathbb{R}^3$ sea una inmersión mínima conforme de una superficie de Riemann. Las formas 1 $f_k=(x_{k,u}-ix_{k,v})dz$ satisfechos: $$ \sum_kf_k^2=0\qquad (1)\qquad \&\qquad \sum_k|f_k|^2\not=0\qquad (2)$$ A la inversa, dada una superficie de Riemann y formas holomorfas 1 $f=(f_1,f_2,f_3)$ que satisface (1), (2) y la condición de periodo $$\Re\int_c f=0$$ para cualquier curva de Jordan rectificable en $S$ , entonces el mapa $x:S\to\mathbb{R}^3$ definido por $$x(p)=\Re\int_{p_0}^p f$$ es una inmersión mínima conforme de $S$ .

El problema: Definir $g=\frac{f_3}{f_1-if_2}$ .

Dejemos que $St(x,y,z)=\frac{x+iy}{1-z}$ es la proyección estereográfica a través del polo norte y sobre el plano ecuatorial, y $N$ sea el mapa de Gauss inducido por $x$ . Si podemos demostrar que $g=St\circ N$ el teorema de representación de Weierstrass-Enneper se deduce fácilmente del lema.

Intento: Son posibles dos enfoques. Uno es demostrar la igualdad directamente. Otro es verificar la identidad $$N=\left(\frac{2 \mathrm{Re}(g)}{1 + \bar g g}, \frac{2 \mathrm{Im}(g)}{1 + \bar g g}, \frac{1 - \bar g g}{1 + \bar g g}\right)$$

Seguiremos el primer enfoque. $$x_{,u}\times x_{,v}=(x_{2,u}x_{3,v}-x_{3,u}x_{2,v},\quad x_{3,u}x_{1,v}-x_{1,u}x_{3,v},\quad x_{1,u}x_{2,v}-x_{2,u}x_{1,v})$$ $$\& \qquad x_{2,u}x_{3,v}-x_{3,u}x_{2,v}=\Im(x_{2,u}x_{3,u}-x_{3,v}x_{2,v}+i(x_{2,u}x_{3,v}-x_{3,u}x_{2,v}))=\Im f_2\bar{f_3}$$ $$\& \qquad x_{3,u}x_{1,v}-x_{1,u}x_{3,v}=\Im f_3\bar{f_1}$$ $$\& \qquad x_{1,u}x_{2,v}-x_{2,u}x_{1,v}=\Im f_1\bar{f_2}$$ $$\Rightarrow x_{,u}\times x_{,v}=\Im(f_2\bar{f_3},f_3\bar{f_1},f^1\bar{f_2})=\frac{1}{2} f\times \bar{f}$$ Sólo comprobaremos el primer componente de la última igualdad. Las demás se deducen de forma análoga. $$(f\times\bar{f})_1=f_2\bar{f_3}-f_3\bar{f_2}=(x_{2,u}-ix_{2,v})(x_{3,u}+ix_{3,v})=$$ $$x_{2,u}x_{3,u}+x_{2,v}x_{3,v}-x_{2,u}x_{3,u}-x_{2,v}x_{3,v}+i(-x_{2,v}x_{3,u}+x_{2,u}x_{3,v}-x_{2,v}x_{3,u}+x_{2,u}x_{3,v})=2\Im f_2\bar{f_3}$$

Además, $|x_{,u}\times x_{,v}|=\sqrt{|x_{,u}|^2|x_{,v}|^2-\langle x_{,u},x_{,v}\rangle^2}$ . Desde $x$ es conforme, $|x_{,u}\times x_{,v}|=|x_{,u}||x_{,v}|$ .

Si pudiéramos ver que $|x_{,u}\times x_{,v}|=\frac{|f|^2}{2}$ entonces

$$N(u,v)=\frac{x_{,u}\times x_{,v}}{|x_{,u}\times x_{,v}|}=$$ $$\frac{f\times \bar{f}}{|f|^2}=2\Im \frac{(f_2\bar{f_3},f_3\bar{f_1} ,f_2\bar{f_2} )}{|f|^2}$$

Dejemos que $G=St\circ N$ . Tenemos $$G=St(\frac{f\times\bar{f}}{|f|^2})=St(\frac{2\Im (f_2\bar{f_3},f_3\bar{f_1},f^1\bar{f_2})}{|f|^2})=$$ $$\frac{2\Im(f_2\bar{f_3})+i2\Im(f_3\bar{f_1})}{|f|^2-2\Im(f_1\bar{f_2})}$$

Por favor, ayuda con este problema.

Editar: Gracias, James Cook. El problema es verificar la identidad $g=G$ .

Editar: Una referencia estaría bien.

1voto

user197427 Puntos 396

En primer lugar, demostramos que $|x_{,u} \times x_{,v}| = \frac{|f|^2}{2}$ . Obsérvese que como $z = u+iv$ tenemos $$x_{,u} = \mathfrak{R} \left(\frac{d x}{d z}\frac{\partial z}{\partial u}\right) = \mathfrak{R} f.$$ (De manera similar, $x_{,v} = - \mathfrak{I} f$ .) Así, tenemos $|x_{,u} \times x_{,v}| = |x_{,u}| |x_{,v}| = |\mathfrak{R} f|^2$ por la conformidad. Ahora calculamos esto: \begin{align*} |\mathfrak{R} f|^2 & = \frac{1}{4} \left(f_1 + \overline{f_1}\right)^2 + \frac{1}{4} \left(f_2 + \overline{f_2}\right)^2 + \frac{1}{4} \left(f_3 + \overline{f_3}\right)^2 \\ & = \frac{1}{4} \left(f_1^2 + f_2^2 + f_3^2\right) + \frac{1}{2} \left(f_1 \overline{f_1} + f_2 \overline{f_2} + f_3 \overline{f_3} \right) + \frac{1}{4} \left(\overline{f_1^2} + \overline{f_2^2} + \overline{f_3^2}\right)\\ & = \frac{1}{2} |f|^2. \end{align*}

Para demostrar que $G = g$ tenemos \begin{align*} G & = \frac{2\mathfrak{I}(f_2 \overline{f_3}) + i 2\mathfrak{I}(f_3\overline{f_1})}{|f|^2 - 2 \mathfrak{I}(f_1\overline{f_2})}\\ & = \frac{2\left(\frac{f_2\overline{f_3} - \overline{f_2}f_3}{2i}\right) +2i \left(\frac{f_3\overline{f_1} - \overline{f_3}f_1}{2i}\right)}{f_1\overline{f_1} + f_2\overline{f_2} + f_3\overline{f_3} -2\left(\frac{f_1\overline{f_2} - \overline{f_1}f_2}{2i}\right)} \\ & = \frac{f_3(\overline{f_1}+i\overline{f_2}) - \overline{f_3} (f_1 + i f_2)}{f_1\overline{f_1} + f_2\overline{f_2} + f_3\overline{f_3} +if_1\overline{f_2} - i\overline{f_1}f_2}\\ &:= \frac{A}{B}. \end{align*} Nos gustaría demostrar que $\frac{A}{B} = \frac{f_3}{f_1-if_2}$ por lo que basta con demostrar que $A(f_1-if_2) = Bf_3$ . Ahora calculamos \begin{align*} A(f_1-if_2) & = f_3(f_1\overline{f_1} - i\overline{f_1}f_2 +i f_1\overline{f_2} + f_2\overline{f_2}) - \overline{f_3}(f_1^2 + f_2^2) \\ & = f_3(f_1\overline{f_1} - i\overline{f_1}f_2 +i f_1\overline{f_2} + f_2\overline{f_2}) - \overline{f_3}(-f_3^2) \\ & = f_3 \left(f_1\overline{f_1} - i\overline{f_1}f_2 +i f_1\overline{f_2} + f_2\overline{f_2} + f_3\overline{f_3}\right)\\ & = f_3 B \end{align*} donde en la segunda línea utilizamos $f_1^2+f_2^2+f_3^2=0$ .

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X