3 votos

cómo encontrar $ \lim\limits_{x \to \infty} \left(\sqrt{x^2 +1} +\sqrt{4x^2 + 1} - \sqrt{9x^2 + 1}\right)$

¿Cómo puedo encontrar esto?

$ \lim\limits_{x \to \infty} \left(\sqrt{x^2 +1} +\sqrt{4x^2 + 1} - \sqrt{9x^2 + 1}\right)$

3voto

medicu Puntos 2255

$ \lim\limits_{x \to \infty} \left(\sqrt{x^2 +1} +\sqrt{4x^2 + 1} - \sqrt{9x^2 + 1}\right) =\lim\limits_{x \to \infty} \left(\sqrt{x^2 +1}-x +\sqrt{4x^2 + 1}-2x - (\sqrt{9x^2 + 1}-3x)\right) = $ $\lim\limits_{x \to \infty}\frac{1}{\sqrt{x^2 +1}+x}+\lim\limits_{x \to \infty}\frac{1}{\sqrt{4x^2 + 1}+2x} -\lim\limits_{x \to \infty}\frac{1}{\sqrt{9x^2 + 1}+3x} = 0 + 0 + 0 = 0$

2voto

Matt Puntos 2318

Aquí hay otra táctica. Si $a > 0$ , $${\sqrt{a^2 x^2 + 1} - ax } = {1\over{\sqrt{a^2 x^2 + 1} + ax }}= O\left ({1\over x}\right). $$

1voto

Roger Hoover Puntos 56

Ya que para cualquier $A>0$ $$\sqrt{A^2 x^2+1}-A|x| = \frac{1}{A|x|+\sqrt{A^2 x^2+1}}<\frac{1}{2A|x|}$$ se mantiene, tenemos: $$\left|\sqrt{x^2+1}+\sqrt{4x^2+1}-\sqrt{9x^2+1}\right|=\left|\sqrt{x^2+1}-|x|+\sqrt{4x^2+1}-2|x|-\sqrt{9x^2+1}+3|x|\right|\leq \left|\sqrt{x^2+1}-|x|\right|+\left|\sqrt{4x^2+1}-2|x|\right|+\left|\sqrt{9x^2+1}-3|x|\right|<\frac{1}{|x|}\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}\right),$$ por lo que el límite es $0$ .

0voto

kok Puntos 931

Un resultado heurístico:

Tenga en cuenta que $x$ ~ $\sqrt{x^2 + 1}$ como $x \to \infty$ y resultados similares son válidos para los demás términos. Por lo tanto, se ve que el límite es cero.

Para que el resultado sea más riguroso, observa lo que ocurre cuando expandes el resultado de la respuesta de Elías utilizando la serie binomial.

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X