Encontrar la suma de $\displaystyle \sum^{n}_{k=0}(-1)^k\cdot \frac{\binom{n}{k}}{\binom{k+3}{k}}$
Inténtalo: Utilizando
$$\int^{1}_{0}x^m\cdot (1-x)^ndx = \frac{m!\cdot n!}{(m+n+1)!}=\frac{1}{(m+n+1)\binom{m+n}{n}}.$$
Así que $$ \frac{1}{(k+4)\binom{k+3}{k}}=\int^{1}x^3\cdot (1-x)^kdx$$
Así que nuestra suma es $$\sum^{n}_{k=0}(-1)^k(k+4)\binom{n}{k}\int^{1}_{0}x^3(1-x)^kdx$$
$$ = \int^{1}_{0}x^3\sum^{n}_{k=0}(-1)^kk\binom{n}{k}(1-x)^kdx+4\int^{1}_{0}x^3\sum^{n}_{k=0}(-1)^k\binom{n}{k}(1-x)^k$$
$$ = -n\int^{1}_{0}x^{n+2}(1-x)dx+4\int^{1}_{0}x^{n+3}dx$$
$$ = -n\bigg[\frac{1}{n+3}-\frac{1}{n+4}\bigg]+\frac{4}{n+4} = -\frac{n}{(n+3)(n+4)}+\frac{4}{n+4} = $$
pero la respuesta se da en el libro como $\displaystyle \frac{3}{n+3}$
¿Podría alguien ayudarme a resolverlo?