Dado :
- $X_1, X_2, X_3, \ldots,X_{10}\ \sim\ \,\mathrm{e}^{\lambda}$
- $X_1, X_2, X_3,\ldots,X_{10}\,\,\, \mbox{are independent variables}$
- $\lambda > 0.5$
Calcula lo siguiente:
$$ P\left(\sum_{i = 1}^{10}X_{i} \leq {15 \over \lambda}\right)$$
Dado :
Calcula lo siguiente:
$$ P\left(\sum_{i = 1}^{10}X_{i} \leq {15 \over \lambda}\right)$$
Si, $X_i$ , $i=1,2,\cdots ,n$ sean variables aleatorias exponenciales i.i.d con $\lambda$ parámetro $Y=\sum\limits_{i=1}^{n}{{{X}_{i}}}$ tiene una distribución gamma con parámetros $n$ y $\lambda$ De hecho $${{f}_{Y}}(y)=\lambda {{e}^{-\lambda y}}\frac{{{(\lambda y)}^{n-1}}}{(n-1)!}$$ por lo tanto $$ F_Y\left(\frac{15}{\lambda}\right)=P\left(Y\le \frac{15}{\lambda}\right)=\int_{0}^{\frac{15}{\lambda}}f_Y(y)dy=\frac{\lambda^{10}}{9!}\int_{0}^{\frac{15}{\lambda}}y^{9}e^{-\lambda y} dy$$
I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.