En las definiciones de un campo, tenemos $ 1 \neq 0$ .
Sé que en la multiplicación regular $0 \times 1=0$ pero para la recíproca no tenemos la inversa de $0$ .
Pero todos los espacios y las diferentes definiciones de las multiplicaciones que satisfacen los axiomas de campo, ¿por qué necesitamos $ 1 \neq 0$ ?
Por favor, no utilice una terminología demasiado técnica. Estoy leyendo a Baby Rudin ahora mismo.