Esbozo de una prueba. Introducimos $$f(X(\lambda)):=g_{\mu\nu}(X(\lambda))\frac{dX^\mu}{d\lambda}\frac{dX^\nu}{d\lambda} $$
y $\delta X^\mu(\lambda):=\epsilon \varphi^\mu(\lambda)$ , donde $\epsilon >0$ . Entonces
$$f(X(\lambda)+\epsilon\varphi(\lambda))-f(X(\lambda))=\frac{f^2(X(\lambda)+\epsilon\varphi^\mu(\lambda))-f^2(X(\lambda))}{f(X(\lambda)+\epsilon\varphi(\lambda))+f(X(\lambda))}, $$
donde suponemos $f(X(\lambda)+\epsilon\varphi^\mu(\lambda))+f(X(\lambda))\neq 0$ .
Entonces (si $f(X(\lambda)+\epsilon\varphi(\lambda))>0$ y $f(X(\lambda))>0$ )
$$f(X(\lambda)+\epsilon\varphi(\lambda))-f(X(\lambda))=\frac{g_{\mu\nu}(X(\lambda)+\epsilon\varphi(\lambda))\frac{dX^\mu+\epsilon\varphi(\lambda)}{d\lambda}\frac{dX^\nu+\epsilon\varphi(\lambda)}{d\lambda}-g_{\mu\nu}(X(\lambda))\frac{dX^\mu}{d\lambda}\frac{dX^\nu}{d\lambda}}{\sqrt{g_{\mu\nu}(X(\lambda)+\epsilon\varphi(\lambda))\frac{dX^\mu}{d\lambda}\frac{dX^\nu}{d\lambda}+O(\epsilon)}+\sqrt{g_{\mu\nu}(X(\lambda))\frac{dX^\mu}{d\lambda}\frac{dX^\nu}{d\lambda}}}; $$ necesitamos agrupar los términos en el numerador. Hagámoslo. Suponemos que $g$ es diferenciable, es decir
$$g_{\mu\nu}(X(\lambda)+\epsilon\varphi(\lambda))-g_{\mu\nu}(X(\lambda)) = \epsilon\langle \nabla g_{\mu\nu}(X(\lambda)), \varphi(\lambda)\rangle + O(\epsilon^2),$$
o
$$g_{\mu\nu}(X(\lambda)+\epsilon\varphi(\lambda))-g_{\mu\nu}(X(\lambda)) = \epsilon \partial_\sigma g_{\mu\nu}(X(\lambda))\varphi^\sigma(\lambda) + O(\epsilon^2).$$
Entonces, formalmente:
$$0=\delta S:=\lim_{\epsilon\rightarrow 0}\frac{1}{\epsilon}\int d\lambda f(X(\lambda)+\epsilon\varphi(\lambda))-f(X(\lambda))= \lim_{\epsilon\rightarrow 0} \int d\lambda \frac{ g_{\mu\nu}(X(\lambda))\frac{dX^\mu}{d\lambda}\frac{d\varphi^\nu}{d\lambda}+ g_{\mu\nu}(X(\lambda))\frac{dX^\nu}{d\lambda}\frac{d\varphi^\mu}{d\lambda}+ \partial_\sigma g_{\mu\nu}(X(\lambda))\varphi^\sigma(\lambda) \frac{dX^\mu}{d\lambda}\frac{dX^\nu}{d\lambda} + O(\epsilon) }{ \sqrt{g_{\mu\nu}(X(\lambda))\frac{dX^\mu}{d\lambda}\frac{dX^\nu}{d\lambda}+O(\epsilon)}+\sqrt{g_{\mu\nu}(X(\lambda))\frac{dX^\mu}{d\lambda}\frac{dX^\nu}{d\lambda}}}= \int d\lambda \frac{ 2g_{\mu\nu}(X(\lambda))\frac{dX^\mu}{d\lambda}\frac{d\varphi^\nu}{d\lambda}+ \partial_\sigma g_{\mu\nu}(X(\lambda))\varphi^\sigma(\lambda) \frac{dX^\mu}{d\lambda}\frac{dX^\nu}{d\lambda} }{2f(X(\lambda))}.$$