$\sqrt[3]{n^3+3n}-\sqrt{n^2-2n}= \sqrt[6]{(n^3+3n)^2}- \sqrt[6]{(n^2-2n)^3}=a^{1/6}-b^{1/6}$ , donde $a=(n^3+3n)^2, b=(n^2-2n)^3$
Simplifiquemos primero $a^{1/6}-b^{1/6}$ . Tenga en cuenta que $a^{1/6}-b^{1/6}=\frac{a^{1/3}-b^{1/3}}{a^{1/6}+b^{1/6}}=\frac{(a^{1/3})^3-(b^{1/3})^3}{(a^{1/6}+b^{1/6})(a^{2/3}+a^{1/3}b^{1/3}+b^{2/3})}=\frac{a-b}{(a^{1/6}+b^{1/6})(a^{2/3}+a^{1/3}b^{1/3}+b^{2/3})}$
El numerador es $a-b=n^6\left ((1+\frac 3{n^2})^2-(1-\frac 2n)^3\right)=n^6(6/n+ 9/n^4+8/n^3-18/n^2)$
$1$ factor en el denominador = $n\left((1+\frac 3n)^{1/3}+(1-\frac 2n)^{1/2}\right)$
$2$ nd factor en el denominador= $n^4\left ( (1+\frac 3{n^2})^{4/3}+(1+\frac 3{n^2})^{2/3}(1-\frac 2n)+(1-\frac 2n)^{1/2}\right)$
Así que tenemos
$\begin{align}\sqrt[3]{n^3+3n}-\sqrt{n^2-2n}&= \sqrt[6]{(n^3+3n)^2}- \sqrt[6]{(n^2-2n)^3}\\&=a^{1/6}-b^{1/6}\\&=\frac{6+\frac 1{n^3}(9+8n-18n^2)}{\left((1+\frac 3n)^{1/3}+(1-\frac 2n)^{1/2}\right)\left ( (1+\frac 3{n^2})^{4/3}+(1+\frac 3{n^2})^{2/3}(1-\frac 2n)+(1-\frac 2n)^{1/2}\right)}\\& \to\frac {6} {2\times 3}=1\end {align}$