Calcula la solución general y la solución específica de la siguiente ecuación diferencial: $(3y - 1)^2 (y')^2 = 4y.$
La solución general es $(x + C)^2 = y(y - 1)^2$ y el específico es $y = 0$ .
He intentado reescribirlo como $y' = \dfrac{2y}{3y + 1}$ pero no sé qué hacer a continuación.