39 votos

Evaluación de $\int_0^{\infty}\frac{\ln(x^2+1)}{x^2+1}dx$

¿Cómo podría evaluar esta integralidad? $$\int_0^{\infty}\frac{\ln(x^2+1)}{x^2+1}dx.$$ Lo que he probado hasta ahora: Intenté una integral semicircular en la parte imaginaria positiva del plano complejo, excluyendo el eje real negativo, pero tuve problemas para calcular el residuo en $z=i$ (tal vez haya una forma de hacerlo que desconozco). Después de que eso no funcionara, probé con una caja rectangular integral de $\epsilon$ a $R$ , de $R$ a $R+i/2$ , de $R+i/2$ a $-S+i/2$ , de $-S+i/2$ a $-S+i\epsilon$ , de $-S+i\epsilon$ a $-\epsilon+i\epsilon$ y finalmente un semicírculo alrededor del origen, de radio $\epsilon$ .

Se agradecería cualquier ayuda.

2voto

Zack Ni Puntos 96

Esta es una manera de utilizar la integración de contornos y fácil de entender:

Convención:

La rama del logaritmo es el corte de la rama principal.

El argumento es utilizar bajo valor principal.

$$\int_{0}^{\infty} \frac{\log(1+x^2)}{1+x^2}~dx = \\ \int_{0}^{\infty} \frac{\log(x^2+1)}{1+x^2}~dx = \\ \int_{0}^{\infty} \frac{\log((x+i)(x-i))}{1+x^2}~dx = \\\int_{0}^{\infty} \frac{\log(|x+i|) + Arg(x+i) + log(|x-i|)+ Arg(x-i) }{1+x^2}~dx = \\ \int_{0}^{\infty} \frac{\log(|x+i|) + log(|x-i|)+ Arg(2x) }{1+x^2}~dx = \\$$$$ \int_{0}^{infty} \frac{log(|x+i|) + log(|x-i|)}{1+x^2}~dx \tag{1} $$

Hacer la integración del contorno con respecto a la función: $f(x) = log(x+i)/(x^2+1)$

Definir el contorno:

$\Gamma_1:= x \text{ from } 0 \text{ to } \infty$

$\Gamma_2:= x \text{ from } \infty \text{ to } -\infty \text{ along the upper semicircle}$

$\Gamma_3:= x \text{ from } -\infty \text{ to } 0$

Fácil de ver: $\int_{\Gamma_2} |f(x)| \leq 2 \pi \max_{\Gamma_2} {\frac{|\log(x+i)|}{|1+x^2|}} \leq \frac{log(\sqrt{x^2+1})}{x^2+1}+\frac{\pi^2}{x^2+1} = 0$

Así que $\int_{\Gamma_2} f(x) = 0$

El residuo para $f(x)$ en $x = i$ es $\frac{\log(2)+ \frac{\pi}{2}}{2i}$

Por el teorema del residuo: $\int_{\Gamma_1} f(x) + \int_{\Gamma_3} f(x) = 2\pi Res(f,i) = \pi \log(2) + \frac{\pi^2 i}{2} $

$$\int_0^\infty \frac{log(x+i)}{(x^2+1)} + \int_{-\infty}^0 \frac{log(x+i)}{(x^2+1)} = \pi \log(2) + \frac{\pi^2 i}{2} \implies\\\int_0^\infty \frac{log|x+i|}{(x^2+1)} + \int_{-\infty}^0 \frac{log(|x+i|)+ \pi i}{(x^2+1)} = \pi \log(2) + \frac{\pi^2 i}{2} \implies\\\int_0^\infty \frac{log|x+i|}{(x^2+1)} + \int_{-\infty}^0 \frac{log(|x+i|)}{(x^2+1)}+ \int_{-\infty}^0 \frac{ \pi i}{(x^2+1)} = \pi \log(2) + \frac{\pi^2 i}{2} \\$$

Recuerdo: $\int \frac{1}{x^2+1} = arctan(x)+c$

$$ \implies \int_0^\infty \frac{log|x+i|}{(x^2+1)} + \int_{0}^{\infty} \frac{log(|x-i|)}{(x^2+1)}+ \frac{i\pi^2}{2} = \pi \log(2) + \frac{i\pi^2}{2}\\\\\implies \int_0^\infty \frac{log|x+i| + log|x-i|}{(x^2+1)} = \pi \log(2) $$

Sustituir en $(1)$ , $\int_{0}^{\infty} \frac{\log(|x+i|) + log(|x-i|)}{1+x^2}~dx = \pi \log(2)$

0voto

Felix Marin Puntos 32763

$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin{align} &\bbox[5px,#ffd]{\int_{0}^{\infty}{\ln\pars{x^{2} + 1} \over x^{2} + 1}\,\dd x} = {1 \over 2}\int_{-\infty}^{\infty}{\ln\pars{x^{2} + 1} \over x^{2} + 1} \,\dd x \\[5mm] = &\ \Re\int_{-\infty}^{\infty}{\ln\pars{1 + \ic x} \over x^{2} + 1}\,\dd x \\[5mm] \stackrel{{\Large 1\ +\ \ic x\ =\ s} \atop {\Large x\ =\ \ic\pars{1 - s}}}{=}\,\,\,& \Re\int_{1 - \infty\ic}^{1 + \infty\ic}{\ln\pars{s} \over -\pars{1 - s}^{2} + 1}\,\pars{-\ic}\dd s \\[5mm] & =\, -\,\Im\int_{1 - \infty\ic}^{1 + \infty\ic}{\ln\pars{s} \over s\pars{s - 2}}\,\dd s \\[5mm] = &\ -\,\Im\bracks{\color{red}{-}2\pi\ic\,{\ln\pars{2} \over 2}} \label{1}\tag{1} \\[5mm]= &\ \bbx{\pi\ln\pars{2}} \approx 2.1776 \\ & \end{align} En ( \ref {1}), he "cerrado" la trayectoria de integración con un semicírculo de radio infinito radio infinito a la "derecha" ( nótese el $\ds{\color{red}{-}\mbox{sign}}$ porque la integración del contorno es en el sentido de las agujas del reloj ). El magnitud de la contribución a lo largo del arco $\ds{< \pi\root{\ln^{2}\pars{R} + \pi^{2}}/R}$ como $\ds{R \to \infty}$ donde $\ds{R}$ es el radio del semicírculo . $\ds{\ln}$ es el logaritmo rama principal .

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X