Además, algunos resultados crudos (en gran parte inspirado por Cleo respuesta :+1) para los impacientes :
$$I\left(4,1\right)=- \frac{1915}{128}\zeta(3)+\left(\frac {359}{192}\ln(2) + 2\ln(3) + \frac{175}{96}\ln(5)\right)\pi^2 +\frac{513}{32}\ln(2)^2\ln(5) - \frac{1535}{96}\ln(2)^3 - \frac {15}4\ln(3)^3 - \frac{1031}{96}\ln(5)^3 - \frac{31}8\ln(2)\ln(5)^2 + \frac{93}8\ln(3)\ln(5)^2 + \frac {45}4\operatorname{Li}_3(1/3) +\frac{93}8\operatorname{Li}_3(2/3) - \frac{81}{32}\operatorname{Li}_3(1/5) - \operatorname{Li}_3(2/5) - \frac 38\operatorname{Li}_3(3/5) - \frac {91}{32}\operatorname{Li}_3(4/5)- \frac 38\operatorname{Li}_3(1/6) + \frac 5{16}\operatorname{Li}_3(1/10) \\- \ln(2)\left(12\operatorname{Li}_2(1/3) + 8\operatorname{Li}_2(1/4) + 2\operatorname{Li}_2(1/5)+\frac {163}{16}\operatorname{Li}_2(2/5) + \frac {195}{16}\operatorname{Li}_2(3/5)\right) \\- \frac{189}{16}\,\ln(5)\;(\operatorname{Li}_2(2/5)+\operatorname{Li}_2(3/5))$$
$$I\left(5,1\right)=- \frac{577}{160}\zeta(3)+\left(\frac {11}{15}\ln(3) + \frac{191}{480}\ln(4) - \frac{11}{60}\ln(5)\right)\pi^2 + \frac{17}{10}\ln(3)\ln(5)^2 - \frac{17}{30}\ln(3)^3 - \frac{173}{960}\ln(4)^3 - \frac{181}{120}\ln(5)^3 - \frac 1{10}\ln(4)\ln(5)^2 + \frac{51}{160}\ln(4)^2\ln(5) + 2\operatorname{Li}_3(1/3) + \frac 75\operatorname{Li}_3(2/3) - \frac 38\operatorname{Li}_3(1/5) + \frac 9{10}\operatorname{Li}_3(2/5) - \frac 35\operatorname{Li}_3(3/5) -\frac 18\operatorname{Li}_3(4/5) + \frac 14\operatorname{Li}_3(1/10) - \frac 75\ln(2)\,\left(\operatorname{Li}_2(1/3)+\frac{\operatorname{Li}_2(1/4)}2 +\operatorname{Li}_2(2/5)+\operatorname{Li}_2(3/5)\right) - \ln(5)\,\left(\operatorname{Li}_2(2/5)+2\operatorname{Li}_2(3/5)\right)$$
$$I\left(\frac 12,1\right)=-\frac{39}8\zeta(3)+\left(\ln(2)+5\ln(3)+2\ln(5)\right)\zeta(2)-\frac 5{12}\ln(3)^3+\ln(2)^2\ln(25/8)-\ln(25/9)\ln(5)^2 -\ln(4)\left(\operatorname{Li}_2(1/3)+\frac 34 \operatorname{Li}_2(1/4)\right)-(\ln(4)+2\ln(5))\;(\operatorname{Li}_2(2/5)+\operatorname{Li}_2(3/5))+\frac 12\operatorname{Li}_3(1/3)+2\operatorname{Li}_3(2/3)$$
$$I\left(\frac 13,1\right)=-\frac{139}{24}\zeta(3)+\left(\frac 94\ln(2)-\frac 5{12}\ln(3)+\frac 13\ln(5)\right)\pi^2 + 2\ln(2)^2\ln(5) - 2\ln(2)^3 -\frac 23\ln(3)^3 - 2\ln(5)^3 + 2\ln(3)\ln(5)^2 + 2\operatorname{Li}_3(1/3) + 2\operatorname{Li}_3(2/3) - 2\ln(2)\,\left(\operatorname{Li}_2(1/3)+\frac 12\operatorname{Li}_2(1/4)+\operatorname{Li}_2(2/5) +\operatorname{Li}_2(3/5)\right) - 2\ln(5)\;(\operatorname{Li}_2(2/5)+\operatorname{Li}_2(3/5))$$
$$I\left(\frac 23,1\right)=\frac{573}{128}\zeta(3)+\left(\frac{31}{64}\ln(2)-\frac 23\ln(3)-\frac 5{48}\ln(5)\right)\pi^2 + \frac {47}{32}\ln(2)^3 + \frac 34\ln(3)^3 + \frac {79}{32}\ln(5)^3 - 3\ln(2)\ln(5)^2 + \frac{45}{32}\ln(2)^2\ln(5) - \frac 74\ln(3)\ln(5)^2 - \frac 54\operatorname{Li}_3(1/3) - \frac 94\operatorname{Li}_3(2/3) - \frac {17}{32}\operatorname{Li}_3(1/5) - \operatorname{Li}_3(1/6) - \frac {13}8\operatorname{Li}_3(2/5) - \operatorname{Li}_3(3/5) - \frac {27}{32}\operatorname{Li}_3(4/5) - \frac 5{16}\operatorname{Li}_3(1/10) + \ln(2)\,\left(\frac 54\operatorname{Li}_2(1/3) + \frac 58\operatorname{Li}_2(1/4)\right) + (\ln(3)-\ln(2))\operatorname{Li}_2(1/5) + \frac{3\ln(2)+7\ln(5)}4\,(\operatorname{Li}_2(2/5) + \operatorname{Li}_2(3/5))$$
$$I\left(\frac 14,1\right)=\frac{335}{32}\zeta(3)-\left(\frac{95}{48}\ln(2)+\frac 23\ln(3)+\frac 1{24}\ln(5)\right)\pi^2 + \frac {107}{24}\ln(2)^3 + \frac 73\ln(3)^3 + \frac {41}8\ln(5)^3 - \ln(2)\ln(5)^2 - \frac{21}8\ln(2)^2\ln(5) - \frac {11}2\ln(3)\ln(5)^2 - 7\operatorname{Li}_3(1/3) - \frac{11}2\operatorname{Li}_3(2/3) - \frac 78\operatorname{Li}_3(1/5) + \operatorname{Li}_3(2/5) - \frac 32\operatorname{Li}_3(3/5) + \frac 38\operatorname{Li}_3(4/5) - \frac 32\operatorname{Li}_3(1/6)- \frac 54\operatorname{Li}_3(1/10) + \ln(2)\;\left(4\operatorname{Li}_2(1/3) + 2\operatorname{Li}_2(1/4) + \frac 54\operatorname{Li}_2(2/5) + \frac {13}4\operatorname{Li}_2(3/5)\right) + \frac {19}4\ln(5)\;\left(\operatorname{Li}_2(2/5) + \operatorname{Li}_2(3/5)\right)$$
Raw expresiones para (el necesario) las simplificaciones y las manipulaciones
($I(4,1), (5,1), (1/2,1), (1/3,1), (2/3,1),I(1/4,1)$ respectivamente)
- 1915/128*zeta(3)+(359/192*ln(2) + 2*ln(3) + 175/96*ln(5))*PI^2 +(513/32*ln(2)^2*ln(5) - 1535/96*ln(2)^3 - 15/4*ln(3)^3 - 1031/96*ln(5)^3 - 31/8*ln(2)*ln(5)^2 + 93/8*ln(3)*ln(5)^2 + 45/4*polylog(3, 1/3) +93/8*polylog(3, 2/3) - 81/32*polylog(3, 1/5) - 3/8*polylog(3, 1/6) - polylog(3, 2/5) - 3/8*polylog(3, 3/5) - 91/32*polylog(3, 4/5) + 5/16*polylog(3, 1/10) - 12*ln(2)*polylog(2, 1/3) - 8*ln(2)*polylog(2, 1/4) - 2*ln(2)*polylog(2, 1/5) - 163/16*ln(2)*polylog(2, 2/5) - 195/16*ln(2)*polylog(2, 3/5) - 189/16*ln(5)*polylog(2, 2/5) - 189/16*ln(5)*polylog(2, 3/5))
- 577/160*zeta(3) +(191/240*ln(2)+11/15*ln(3)-11/60*ln(5))*PI^2 + 17/10*ln(3)*ln(5)^2 - 17/30*ln(3)^3 - 173/960*ln(4)^3 - 181/120*ln(5)^3 - 1/10*ln(4)*ln(5)^2 + 51/160*ln(4)^2*ln(5) + 2*polylog(3, 1/3) + 7/5*polylog(3, 2/3) - 3/8*polylog(3, 1/5) + 9/10*polylog(3, 2/5) - 3/5*polylog(3, 3/5) - 1/8*polylog(3, 4/5) + 1/4*polylog(3, 1/10) - 7/10*ln(4)*(polylog(2,1/3)+polylog(2,1/4)/2+polylog(2,2/5)+polylog(2,3/5)) - ln(5)*polylog(2, 2/5) - 2*ln(5)*polylog(2, 3/5)
-39/8*zeta(3)+(ln(2)+5*ln(3)+2*ln(5))*zeta(2)-5/12*ln(3)^3+ln(2)^2*ln(25/8)-ln(25/9)*ln(5)^2 -ln(4)*(polylog(2,1/3)+3/4*polylog(2,1/4))- (ln(4)+2*ln(5))*(polylog(2,2/5)+polylog(2,3/5))+polylog(3,1/3)/2+2*polylog(3,2/3)
-139/24*zeta(3)+(9/4*ln(2)-5/12*ln(3)+1/3*ln(5))*PI^2 + 2*ln(2)^2*ln(5) - 2*ln(2)^3 -2/3*ln(3)^3 - 2*ln(5)^3 + 2*ln(3)*ln(5)^2 + 2*polylog(3,1/3) + 2*polylog(3, 2/3) - 2*ln(2)*(polylog(2, 1/3)+polylog(2, 1/4)/2+polylog(2, 2/5) +polylog(2, 3/5)) - 2*ln(5)*(polylog(2,2/5)+polylog(2, 3/5))
573/128*zeta(3)+(31/64*ln(2)-2/3*ln(3)-5/48*ln(5))*PI^2 + 47/32*ln(2)^3 + 3/4*ln(3)^3 + 79/32*ln(5)^3 - 3*ln(2)*ln(5)^2 + 45/32*ln(2)^2*ln(5) - 7/4*ln(3)*ln(5)^2 - 5/4*polylog(3, 1/3) - 9/4*polylog(3, 2/3) - 17/32*polylog(3, 1/5) - polylog(3, 1/6) - 13/8*polylog(3, 2/5) - polylog(3, 3/5) - 27/32*polylog(3, 4/5) - 5/16*polylog(3, 1/10) + ln(2)*(5/4*polylog(2,1/3) + 5/8*polylog(2, 1/4)) + (ln(3)-ln(2))*polylog(2, 1/5) + (3*ln(2)+7*ln(5))/4*(polylog(2, 2/5) + polylog(2, 3/5))
335/32*zeta(3)-(95/48*ln(2)+2/3*ln(3)+1/24*ln(5))*PI^2 + 107/24*ln(2)^3 + 7/3*ln(3)^3 + 41/8*ln(5)^3 - ln(2)*ln(5)^2 - 21/8*ln(2)^2*ln(5) - 11/2*ln(3)*ln(5)^2 - 7*polylog(3, 1/3) - 11/2*polylog(3, 2/3) - 7/8*polylog(3, 1/5) + polylog(3, 2/5) - 3/2*polylog(3, 3/5) + 3/8*polylog(3, 4/5) - 3/2*polylog(3, 1/6)- 5/4*polylog(3, 1/10) + ln(2)*(4*polylog(2, 1/3) + 2*polylog(2, 1/4) + 5/4*polylog(2, 2/5) + 13/4*polylog(2,3/5)) + 19/4*ln(5)*(polylog(2, 2/5) + polylog(2, 3/5))