Gracias ah-huh-moment por la pista
Utilizando su fórmula $\cos x = \dfrac{\sin (2x)}{2\sin x}$ podemos expandir el producto de los cosenos como
$$\frac{\sin(2\pi/2^{2})}{2\sin(\pi/2^{2})}.\frac{\sin(2\pi/2^{3})}{2\sin(\pi/2^{3})}....\frac{\sin(2\pi/2^{n})}{2\sin(\pi/2^{n})}$$
$$\require{cancel}\underbrace{\frac{\sin(2\pi/2^{2})}{\cancel{2\sin(\pi/2^{2})}}.\frac{\cancel{\sin(2\pi/2^{3})}}{\cancel{2\sin(\pi/2^{3})}}....\frac{\cancel{\sin(2\pi/2^{n})}}{2\sin(\pi/2^{n})}}_\text{n-1 terms}$$
Tras la cancelación $$\frac{\sin(2\pi/2^{2})}{2^{n-1}\sin(\pi/2^{n})}=\frac{\sin(\pi/2)}{2^{n-1}\sin(\pi/2^{n})}$$
Ahora, reordenando $$\frac{\sin(\pi/2)}{2^{n}\sin(\pi/2^{n})} = \frac{2}{\pi}.\frac{(\pi/2^{n})}{\sin(\pi/2^{n})}$$
Ahora $$\lim_{n\to\infty, \frac{\pi}{2^{n}}\to0} \frac{2}{\pi}.\frac{(\pi/2^{n})}{\sin(\pi/2^{n})} = \frac{2}{\pi} \because \lim_{x\to0} \frac{\sin(x)}{x} =1 $$