$$\frac 13 + \frac 1{3^2} + \frac 1{3^3} + \dots + \frac 1{3^n} + = \frac 12 \times \left( 1 - \frac{1}{3^n} \right)$$
Paso 1 - $n=1$ $$\begin{align} \frac 1 {3^1} & = \frac 1 2 \times \left( 1 - \frac 1 {3^1} \right) \\ \frac 1 3 & = \frac 1 2 \times \left( 1 - \frac 1 3 \right) \\ \frac 1 3 & = \frac 1 2 \times \frac 2 3 \\ \frac 1 3 & = \frac 1 3 \\ \end{align}$$
Paso 2 - n $=k$ $$ \frac 13 + \frac 1{3^2} + \frac1 {3^3} + \dots + \frac 1 {3^k} = \frac 12 \times \left( 1 - \frac 1 {3^k} \right)$$
Paso 3 - $n=k+1$
Tener problemas para resolver el paso 3.