Tenemos $$x = x(u,v) \ \ \ \text{and} \ \ \ y = y(u,v)$$ entonces el regla de la cadena para funciones de varias variables afirma que $$ \frac{\partial x}{\partial x} = \frac{\partial x}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial x}{\partial v} \frac{\partial v}{\partial x}$$ Pero $$\frac{\partial x}{\partial x} = 1$$ Utilizaré estos hechos más adelante. Por ahora,
Creo que estamos tratando de probar $$ \frac{\partial (x,y)}{\partial(u,v)}\frac{\partial(u,v)}{\partial(x,y)} = I$$ donde $$I = \begin{bmatrix} 1 & 0 \\ 0 & 1\end{bmatrix}$$ También probaremos $$\Bigg \lvert \frac{\partial (x,y)}{\partial(u,v)}\frac{\partial(u,v)}{\partial(x,y)}\Bigg \rvert = 1$$
Así que empezamos:
$$\frac{\partial (x,y)}{\partial(u,v)}\frac{\partial(u,v)}{\partial(x,y)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}\end{vmatrix}\begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}\end{vmatrix}$$
$$ = \det \Bigg (\begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}\end{bmatrix} \Bigg ) \det \Bigg (\begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}\end{bmatrix} \Bigg )$$
$$ = \det \Bigg ( \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}\end{bmatrix}\begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}\end{bmatrix} \Bigg )$$
por la identidad $$\det(AB) = \det(A) \det(B)$$
así que $$ \det \Bigg ( \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}\end{bmatrix}\begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}\end{bmatrix} \Bigg )$$
$$ = \det \Bigg ( \begin{bmatrix} \frac{\partial x}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial x}{\partial v} \frac{\partial v}{\partial x} & \frac{\partial x}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial x}{\partial v} \frac{\partial v}{\partial y} \\ \frac{\partial y}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial y}{\partial v} \frac{\partial v}{\partial x} & \frac{\partial y}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial y}{\partial v} \frac{\partial v}{\partial y}\end{bmatrix} \Bigg )$$
$$ = \det \Bigg ( \begin{bmatrix} \frac{\partial x}{\partial x} & \frac{\partial x}{\partial y} \\ \frac{\partial y}{\partial x} & \frac{\partial x}{\partial x}\end{bmatrix} \Bigg )$$
$$ = \det \Bigg ( \begin{bmatrix} 1 & \frac{\partial x}{\partial y} \\ \frac{\partial y}{\partial x} & 1\end{bmatrix} \Bigg ) $$ por la regla de la cadena para funciones de varias variables, utilizando lo que hemos encontrado anteriormente.
Ahora bien, como $x$ no es una función de $y$ y $y$ no es una función de $x$ tenemos $$ \frac{\partial x}{\partial y} = 0 \ \ \ \text{and} \ \ \ \frac{\partial y}{\partial x} = 0$$
así que $$ \det \Bigg ( \begin{bmatrix} 1 & \frac{\partial x}{\partial y} \\ \frac{\partial y}{\partial x} & 1\end{bmatrix} \Bigg ) = \det \Bigg (\begin{bmatrix} 1 & 0 \\ 0 & 1\end{bmatrix} \Bigg ) = \det(I)$$
por lo que hemos demostrado que $$ \frac{\partial (x,y)}{\partial(u,v)}\frac{\partial(u,v)}{\partial(x,y)} = I $$
Ahora, $$ \det(I) = \det \Bigg (\begin{bmatrix} 1 & 0 \\ 0 & 1\end{bmatrix} \Bigg ) = 1 $$
por lo que también hemos comprobado que $$ \Bigg \lvert \frac{\partial (x,y)}{\partial(u,v)}\frac{\partial(u,v)}{\partial(x,y)}\Bigg \rvert = 1 $$ según sea necesario