1 votos

¿Cómo puedo resolver esta ecuación exponencial?

¿Cómo resolver esta ecuación exponencial?

$$7 \cdot 3^{x+1} - 5^{x+2}= 3^{x+4}- 5^{x+3}$$

5voto

Fimpellizieri Puntos 155

Agruparlos según la base:

\begin{align} &7\cdot 3^{x+1}-3^{x+4}=5^{x+2}-5^{x+3}\\ \implies&3^{x+1}(7-3^3)=5^{x+2}(1-5)\\ \implies&3^{x+1}\cdot (-20)=5^{x+2}\cdot(-4)\\ \implies&3^{x+1}\cdot 5=5^{x+2}\\ \implies&3^{x+1}=5^{x+1} \end{align}

Generalmente, ahora se utilizarían logaritmos, aunque este caso es bastante obvio.

2voto

Battani Puntos 2196

$$\\ 7 \cdot 3^{x+1} - 5^{x+2}= 3^{x+4}- 5^{x+3}\\ 125\cdot { 5 }^{ x }-25\cdot { 5 }^{ x }=81\cdot { 3 }^{ x }-21\cdot { 3 }^{ x }\\ 100\cdot { 5 }^{ x }=60\cdot { 3 }^{ x }\\ { \left( \frac { 5 }{ 3 } \right) }^{ x }=\frac { 3 }{ 5 } \\ x=-1$$

1voto

mrs.imran Puntos 26

$$7 \cdot 3^{x+1} - 5^{x+2}= 3^{x+4}- 5^{x+3}$$ $$21 \cdot 3^{x} -25\cdot 5^{x}= 81\cdot3^{x}- 125\cdot5^{x}$$ $$100\cdot 5^{x}= 60\cdot3^{x}$$ $$\left(\frac{5}{3}\right)^x=\frac{3}{5}=\left(\frac{5}{3}\right)^{-1}$$ $$x=-1$$

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X