$\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}$
\begin{align}&\color{#66f}{\large\int_{0}^{1}{\rm Li}_{2}\pars{x}\,\dd x}
=\left.\vphantom{\Large A}x\,{\rm Li}_{2}\pars{x}\right\vert_{0}^{1}
-\int_{0}^{1}x\,{\rm Li}_{2}'\pars{x}\,\dd x
\\[5mm]&=\overbrace{{\rm Li}_{2}\pars{1}}
^{\ds{\color{#c00000}{\sum_{n\ =\ 1}^{\infty}{1^{n} \over n^{2}}\ =\
{\pi^{2} \over 6}}}}\ -\
\int_{0}^{1}x\ \overbrace{\bracks{-\,{{\ln\pars{1 - x} \over x}}}}
^{\ds{=\ \color{#c00000}{{\rm Li}_{2}'\pars{x}}}}\ \,\dd x
={\pi^{2} \over 6} +\
\underbrace{\int_{0}^{1}\ln\pars{x}\,\dd x}_{\ds{=\ \color{#c00000}{-1}}}
\\[5mm]&=\color{#66f}{\large{\pi^{2} \over 6} - 1} \approx {\tt 0.6449}
\end{align}