$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\pars}[1]{\left(\, #1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$ $\ds{}$ \begin{align}&\color{#66f}{\large% \int_{-1}^{1}\int_{-1}^{1}\delta\pars{w - x^{2} - y^{2}}\,{\dd x \over 2}\, {\dd y \over 2}} \\[3mm]&={1 \over 4}\,2\int_{0}^{1}2\int_{0}^{1}\bracks{% {\delta\pars{y + \root{w - x^{2}}} \over 2\verts{y}} +{\delta\pars{y - \root{w - x^{2}}} \over 2\verts{y}}}\,\dd y\,\dd x \\[3mm]&=\left. \half\int_{0}^{1}{\dd x \over \root{w - x^{2}}}\, \right\vert_{w\ >\ x^{2}\,,\root{\vphantom{\Large A}w - x^{2}}\ <\ 1} =\left. \half\int_{0}^{1}{\dd x \over \root{w - x^{2}}}\, \right\vert_{w - 1\ <\ x^{2}\ <\ w} \\[3mm]&=\left\lbrace\begin{array}{lcl} \half\int_{0}^{\root{w}}{\dd x \over \root{w - x^{2}}} & \mbox{if} & 0 < w < 1 \\[2mm] \half\int_{\root{w - 1}}^{1}{\dd x \over \root{w - x^{2}}} & \mbox{if} & 1 \leq w < 2 \\[2mm] 0 && \mbox{otherwise} \end{array} \derecho. \\[3mm]&=\color{#66f}{\large\left\lbrace \begin{array}{lcl} {\pi \over 4} & \color{#000}{\mbox{if}} & 0 < w < 1 \\[2mm] \half\,\arcsin\pars{{2 \over w} - 1} & \color{#000}{\mbox{if}} & 1 \leq w < 2 \\[2mm] 0 && \color{#000}{\mbox{otherwise}} \end{array}\right.} \end{align}