$$f(f(x))=ax+bf(x)$$
$$f(f(f(x)))=f_3(x)=af(x)+b(ax+bf(x))=abx+(a+b^2)f(x)$$
$$f(f(f(f(x))))=f_4(x)=abf(x)+(a+b^2)(ax+bf(x))=(a^2+ab^2)x+(2ab+b^3)f(x)$$
$$f_n(x)=A_n(a,b)x+B_n(a,b)f(x)$$
$$f_n(f(x))=A_n(a,b)f(x)+B_n(a,b)(ax+bf(x))$$
$$f_n(f(x))=aB_n(a,b)x+(bB_n(a,b)+A_n(a,b))f(x))$$
$$f_{n+1}(x)=A_{n+1}(a,b)x+B_{n+1}(a,b)f(x)$$
$A_2(a,b)=a$
$B_2(a,b)=b$
$A_3(a,b)=ab$
$B_3(a,b)=a+b^2$
$$A_{n+1}(a,b)=aB_n(a,b)$$
$$B_{n+1}(a,b)=A_n(a,b)+bB_n(a,b)$$
$$A_{n+2}(a,b)=aB_{n+1}(a,b)=aA_n(a,b)+abB_n(a,b))=aA_n(a,b)+bA_{n+1}(a,b)$$
$$A_{n+2}(a,b)=aA_n(a,b)+bA_{n+1}(a,b)$$
Cómo se puede encontrar la expresión de forma cerrada de $A_{n}(a,b)$ ?
Muchas gracias por las respuestas