Estoy tratando de responder a esta pregunta:
He intentado resolver la ecuación de Schrodinger utilizando la separación de variables.
Sin embargo, en la función de onda de tiempo posterior no puedo obtener la exp(-3i...)
Mis trabajos actuales son:
Ampliar
\begin{align*} \Psi(x,0) &= \frac{1}{\sqrt{a}} \sin \frac{\pi x}{a}+ \frac{2}{\sqrt{a}} \sin \frac{\pi x}{a} \cos \frac{\pi x}{a} \\ &= \frac{1}{\sqrt{a}} \sin \frac{\pi x}{a}+ \frac{1}{\sqrt{a}} \sin \frac{2\pi x}{a} \\ \omega_{n} &= \frac{n^2 \pi^2 \hbar}{2ma^2} \\ \psi_{n} (x,t) &= \sqrt{\frac{2}{a}} e^{-\omega_{n} t} \sin \frac{n\pi x}{a} \\ \Psi(x,t) &= \frac{1}{\sqrt{a}} \exp \left( -\frac{n^2 \pi^2 \hbar}{2ma^2} \right) \sin \left( \frac{\pi x}{a} \right)+ \frac{1}{\sqrt{a}} \exp \left( -\frac{4n^2 \pi^2 \hbar}{2ma^2} \right) \sin \left( \frac{2\pi x}{a} \right) \\ &= \frac{\psi_{1}(x,t)}{\sqrt{2}}+\frac{\psi_{2}(x,t)}{\sqrt{2}} \end{align*}
I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.