$$\frac{f(f(x)y)}{x^2} = \frac{f(f(x) + f(y))}{x + y }\tag{1}$$ Utilizando la simetría del lado derecho de $(1)$ : $$\frac{f(f(x)y)}{x^2} = \frac{f(f(x) + f(y))}{x + y }= \frac{f(f(y) + f(x))}{y + x }=\frac{f(f(y)x)}{y^2} \implies\\ $$ $$ \frac{f(f(x)y)}{x^2} =\frac{f(f(y)x)}{y^2} \tag{2} $$ Con $ x=y $ en $ (1) $ tenemos : $$ \frac{f(xf(x))}{x} = \frac{f(2f(x))}{2} \tag{3}\\ $$ Una solución para $ (2) $ es : $ f(x)=x^2 $ . Una solución para $ (3) $ es: $ f(x) = x $ .
Lema 1 : si $ f(x) $ existe debe ser inyectiva.
Dejemos que $ f(a)=f(b) $ : $$ A: \enspace \frac{f(af(b))}{a}=\frac{f(af(a))}{a} = (3) = \frac{f(2f(a))}{2} = \frac{f(2f(b))}{2} = (3) = \frac{f(bf(b))}{b}=\frac{f(bf(a))}{b}\\ B: \enspace (2) \implies \frac{f(af(b))}{b^2} = \frac{f(bf(a))}{a^2} \\ A \enspace and \enspace B: \enspace \implies \frac{a}{b} \cdot \frac{f(bf(a))}{b^2} = \frac{f(af(b))}{b^2} = \frac{f(bf(a))}{a^2} \implies a^3=b^3 \implies a = b \enspace \square \\ $$
Ahora demostramos $ (1) $ no tiene soluciones porque $ f(x) <0 $ para algunos $ x $ .
Déjalo: $ x > 1 $ . $$ (1) \implies \frac{f(f(x)(x^2-x))}{x^2} = \frac{f(f(x) + f(x^2-x))}{x+ x^2 -x}\\ f(f(x)(x^2-x)) = f(f(x) + f(x^2-x)) \implies \text{ with injectivity Lemma 1 } \implies \\ f(x)(x^2-x) = f(x) + f(x^2-x) \implies x^2-x=\frac{f(x)}{f(x)} + \frac{ f(x^2-x)}{f(x)} \implies \\ x^2-x -1 = \frac{f(x^2-x)}{ f(x)} $$ Vemos que $ x^2-x -1 < 0 $ para $ 1 <x < \frac{1+\sqrt{5}}{2} $ ( $ \implies f(x^2-x) < 0 \lor f(x) < 0 $ ) y concluir $ (1) $ no tiene soluciones en el rango $f:\mathbb{R}^+ \to \mathbb{R}^+$ $ \enspace \square $
(Tenga en cuenta que : $ \frac{1+\sqrt{5}}{2} $ es la famosa proporción áurea ).