¿Cómo puedo calcular la integral? $\int_{S}^{T} \Phi \Big(\frac{l_0-f(t)}{\sigma}\Big)g(t)dt$ donde $f(t)= \mu_0+\mu_1 e^{-\gamma (7+logt)^\delta}$ y $g(t)= \frac{1}{(t+h)^k}$ .
Aquí $\Phi \Big(\frac{l_0-f(t)}{\sigma}\Big)= \frac{1}{\sigma \sqrt{2 \pi} } \int_{-\infty}^{l_0} e^{\frac{(m-f(t))^2}{2 \sigma^2}} dm$ y $l_0,\mu_0,\mu_1,\gamma,\delta,h,k$ son constantes.