15 votos

Mostrando que $\sum_{k=0}^{\infty} a^{k} \cos(kx) = \frac{1- a \cos x}{1-2a \cos x + a^{2}}$ sin el uso de variables complejas

La identidad de $$\sum_{k=0}^{\infty} a^{k} \cos(kx) = \frac{1- a \cos x}{1-2a \cos x + a^{2}} \ , \ |a| <1$$

pueden ser obtenidos mediante el hecho de que $ \displaystyle \sum_{k=0}^{\infty} a^{k} \cos(kx) = \text{Re} \sum_{k=0}^{\infty} (ae^{ix})^{k}$.

Pero puede ser derivadas sin el uso de variables complejas?

16voto

Etienne Puntos 9562

Aquí es muy poco elegante de la prueba: \begin{eqnarray} (1-2a\cos x+a^2)&\times&\sum_{k=0}^\infty a^k\cos(kx) \\&=&\sum_{k=0}^\infty a^k\cos(kx)-2\sum_{k=1}^\infty a^k\cos((k-1)x)\cos x+\sum_{k=2}^\infty a^k\cos((k-2)x)\\ &=&1-a\cos x+\sum_{k=2}^\infty a^k\left[\cos(kx)-2\cos((k-1)x)\cos x+\cos(k-2)x) \right]\\ &=&1-a\cos x\, . \end{eqnarray}

Edit. Me doy cuenta de que esto es LutzL la respuesta

12voto

David H Puntos 16423

El uso de la identidad,

$$\cos{\left(nx\right)}=\sum_{k=0}^{\lfloor\frac{n}{2}\rfloor}(-1)^k\binom{n}{2k}\sin^{2k}{\left(x\right)}\cos^{n-2k}{\left(x\right)},$$

la serie infinita en cuestión puede ser reescrita como una doble serie infinita sobre un triángulo. Cambiar el orden de la suma de (si eres como yo y la transformación de gimnasia con los índices múltiples hace que usted se sienta mareado, he aquí una útil hoja de trampas), nos quedamos con bastante elemental sumatorias:

$$\begin{align} \sum_{n=0}^{\infty}a^{n}\cos{\left(nx\right)} &=\sum_{n=0}^{\infty}a^{n}\sum_{k=0}^{\lfloor\frac{n}{2}\rfloor}(-1)^k\binom{n}{2k}\sin^{2k}{\left(x\right)}\cos^{n-2k}{\left(x\right)}\\ &=\sum_{n=0}^{\infty}\sum_{k=0}^{\lfloor\frac{n}{2}\rfloor}(-1)^k\binom{n}{2k}a^{n}\sin^{2k}{\left(x\right)}\cos^{n-2k}{\left(x\right)}\\ &=\sum_{n=0}^{\infty}\sum_{k=0}^{\infty}(-1)^k\binom{2k+n}{2k}a^{2k+n}\sin^{2k}{\left(x\right)}\cos^{n}{\left(x\right)}\\ &=\sum_{k=0}^{\infty}(-1)^ka^{2k}\sin^{2k}{\left(x\right)}\sum_{n=0}^{\infty}\binom{2k+n}{2k}\left[a\cos{\left(x\right)}\right]^n\\ &=\sum_{k=0}^{\infty}(-1)^ka^{2k}\sin^{2k}{\left(x\right)}\frac{1}{\left(1-a\cos{\left(x\right)}\right)^{2k+1}}\\ &=\frac{1}{1-a\cos{\left(x\right)}}\sum_{k=0}^{\infty}(-1)^k\left[\frac{a\sin{\left(x\right)}}{1-a\cos{\left(x\right)}}\right]^{2k}\\ &=\frac{1}{1-a\cos{\left(x\right)}}\cdot\frac{1}{1+\left[\frac{a\sin{\left(x\right)}}{1-a\cos{\left(x\right)}}\right]^{2}}\\ &=\frac{1}{1-a\cos{\left(x\right)}}\cdot\frac{\left(1-a\cos{\left(x\right)}\right)^2}{\left(1-a\cos{\left(x\right)}\right)^2+a^2\sin^2{\left(x\right)}}\\ &=\frac{1-a\cos{\left(x\right)}}{1-2a\cos{\left(x\right)}+a^2\cos^2{\left(x\right)}+a^2\sin^2{\left(x\right)}}\\ &=\frac{1-a\cos{\left(x\right)}}{1-2a\cos{\left(x\right)}+a^2}.~~\blacksquare\\ \end{align}$$

Felices fiestas!

7voto

andy.holmes Puntos 518

Este tiene un enfoque estándar: Se multiplica el denominador de la derecha fracción, ordenar el producto con la serie de la izquierda por los poderes de $a$ y aplicar identidades trigonométricas a la resultante de los coeficientes de $a^n$. Todo debe cancelar a excepción de la orden más baja de los términos que constituyen el numerador del lado derecho.


También hay que destacar que este es el núcleo de Poisson de Abel método de la sumación de series de Fourier, véase, por ejemplo, Carl Offner: "Un poco de análisis armónico" (Online artículo en PDF)

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X