1 votos

Encontrar los puntos de la gráfica de la función $\frac{1}{3}x^3 + x^2 - x - 1$ en la que la pendiente es $-1$ ; $2$

Por favor, ayúdame. Encuentre los puntos en la gráfica de $\frac{1}{3}x^3 + x^2 - x - 1$ en la que la pendiente es

(a) $-1$ ; (b) $2$ .

No sé por dónde empezar.

1voto

Stef Puntos 17114

La pendiente de la gráfica es igual a la derivada $$\frac{d}{dx}\left(\frac13x^3+x^2-x-1\right)=x^2+2x-1$$ Ahora resuelve para (a) $$x^2+2x-1=-1 \iff x^2+2x=0 \iff x(x+2)=0$$ y para (b) $$x^2+2x-1=2 \iff x^2+2x-3=0 \iff (x-1)(x+3)=0$$

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X