2 votos

¿Cuándo puedo anular una operación de diferenciación e integración?

¿Es correcto afirmar que

$\frac{d}{ds} \int_{u=0}^{u=s} f(u)du = f(s)$

si $f(u)$ es continua?

Si es así, ¿cuál es el teorema pertinente en acción? Si no es así, ¿qué más se necesitaría?

6voto

Alex Puntos 11160

$\frac{d}{ds} \int_{0}^{s}f(u)du=\frac{d}{ds}(F(s)-F(0))=F'(s)=f(s)$ desde $F(0)$ es una constante.

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X