Estoy adivinando lo que podría significar la forma canónica...
$$ (x+2y+z)^2 - 3 (y + \frac{z}{3})^2 + \frac{7}{3} z^2 $$ Si se requiere tener sólo $\pm 1$ como coeficientes, $$ (x+2y+z)^2 - \left(y \sqrt 3 + \frac{z}{\sqrt3}\right)^2 + \left( \frac{\sqrt 7}{\sqrt3} z\right)^2 $$
$$\left( \begin{array}{rrr} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & \frac{ 1 }{ 3 } & 1 \\ \end{array} \right) \left( \begin{array}{rrr} 1 & 0 & 0 \\ 0 & - 3 & 0 \\ 0 & 0 & \frac{ 7 }{ 3 } \\ \end{array} \right) \left( \begin{array}{rrr} 1 & 2 & 1 \\ 0 & 1 & \frac{ 1 }{ 3 } \\ 0 & 0 & 1 \\ \end{array} \right) = \left( \begin{array}{rrr} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 3 \\ \end{array} \right) $$
cómo hacerlo
Algoritmo discutido en referencia para libros de álgebra lineal que enseñan el método de Hermite inverso para matrices simétricas
https://en.wikipedia.org/wiki/Sylvester%27s_law_of_inertia
$$ H = \left( \begin{array}{rrr} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 3 \\ \end{array} \right) $$ $$ D_0 = H $$ $$ E_j^T D_{j-1} E_j = D_j $$ $$ P_{j-1} E_j = P_j $$ $$ E_j^{-1} Q_{j-1} = Q_j $$ $$ P_j Q_j = Q_j P_j = I $$ $$ P_j^T H P_j = D_j $$ $$ Q_j^T D_j Q_j = H $$
$$ H = \left( \begin{array}{rrr} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 3 \\ \end{array} \right) $$
\==============================================
$$ E_{1} = \left( \begin{array}{rrr} 1 & - 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array} \right) $$ $$ P_{1} = \left( \begin{array}{rrr} 1 & - 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array} \right) , \; \; \; Q_{1} = \left( \begin{array}{rrr} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array} \right) , \; \; \; D_{1} = \left( \begin{array}{rrr} 1 & 0 & 1 \\ 0 & - 3 & - 1 \\ 1 & - 1 & 3 \\ \end{array} \right) $$
\==============================================
$$ E_{2} = \left( \begin{array}{rrr} 1 & 0 & - 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array} \right) $$ $$ P_{2} = \left( \begin{array}{rrr} 1 & - 2 & - 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array} \right) , \; \; \; Q_{2} = \left( \begin{array}{rrr} 1 & 2 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array} \right) , \; \; \; D_{2} = \left( \begin{array}{rrr} 1 & 0 & 0 \\ 0 & - 3 & - 1 \\ 0 & - 1 & 2 \\ \end{array} \right) $$
\==============================================
$$ E_{3} = \left( \begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & - \frac{ 1 }{ 3 } \\ 0 & 0 & 1 \\ \end{array} \right) $$ $$ P_{3} = \left( \begin{array}{rrr} 1 & - 2 & - \frac{ 1 }{ 3 } \\ 0 & 1 & - \frac{ 1 }{ 3 } \\ 0 & 0 & 1 \\ \end{array} \right) , \; \; \; Q_{3} = \left( \begin{array}{rrr} 1 & 2 & 1 \\ 0 & 1 & \frac{ 1 }{ 3 } \\ 0 & 0 & 1 \\ \end{array} \right) , \; \; \; D_{3} = \left( \begin{array}{rrr} 1 & 0 & 0 \\ 0 & - 3 & 0 \\ 0 & 0 & \frac{ 7 }{ 3 } \\ \end{array} \right) $$
\==============================================
$$ P^T H P = D $$ $$\left( \begin{array}{rrr} 1 & 0 & 0 \\ - 2 & 1 & 0 \\ - \frac{ 1 }{ 3 } & - \frac{ 1 }{ 3 } & 1 \\ \end{array} \right) \left( \begin{array}{rrr} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 3 \\ \end{array} \right) \left( \begin{array}{rrr} 1 & - 2 & - \frac{ 1 }{ 3 } \\ 0 & 1 & - \frac{ 1 }{ 3 } \\ 0 & 0 & 1 \\ \end{array} \right) = \left( \begin{array}{rrr} 1 & 0 & 0 \\ 0 & - 3 & 0 \\ 0 & 0 & \frac{ 7 }{ 3 } \\ \end{array} \right) $$ $$ Q^T D Q = H $$ $$\left( \begin{array}{rrr} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & \frac{ 1 }{ 3 } & 1 \\ \end{array} \right) \left( \begin{array}{rrr} 1 & 0 & 0 \\ 0 & - 3 & 0 \\ 0 & 0 & \frac{ 7 }{ 3 } \\ \end{array} \right) \left( \begin{array}{rrr} 1 & 2 & 1 \\ 0 & 1 & \frac{ 1 }{ 3 } \\ 0 & 0 & 1 \\ \end{array} \right) = \left( \begin{array}{rrr} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 3 \\ \end{array} \right) $$