Quiero calcular la integral $\int \sqrt{1+\sin x}\, dx$ .
He hecho lo siguiente:
\begin{equation*}\int \sqrt{1+\sin x}\, dx=\int \sqrt{\frac{(1+\sin x)(1-\sin x)}{1-\sin x}}\, dx=\int \sqrt{\frac{1-\sin^2 x}{1-\sin x}}\, dx=\int \sqrt{\frac{\cos^2x}{1-\sin x}}\, dx=\int \frac{\cos x}{\sqrt{1-\sin x}}\, dx\end{equation*}
Sustituimos $$u=\sqrt{1-\sin x} \Rightarrow du=\frac{1}{2\sqrt{1-\sin x}}\cdot (1-\sin x)'\, dx \Rightarrow du=-\frac{\cos x}{2\sqrt{1-\sin x}}\, dx \\ \Rightarrow -2\, du=\frac{\cos x}{\sqrt{1-\sin x}}\, dx $$
Obtenemos lo siguiente: \begin{equation*}\int \frac{\cos x}{\sqrt{1-\sin x}}\, dx=\int(-2)\, du=-2\cdot \int 1\, du=-2u+c\end{equation*}
Por lo tanto, \begin{equation*}\int \frac{\cos x}{\sqrt{1-\sin x}}\, dx=-2\sqrt{1-\sin x}+c\end{equation*}
En Wolfram la respuesta es otra. ¿Qué he hecho mal?