Aunque tarde en la fiesta, pongo una respuesta a nivel elemental. Tal vez esto demuestra el poder del cálculo tensorial utilizado en todas las respuestas anteriores.
Resumen
En esta respuesta trataremos de derivar las ecuaciones de Maxwell en el espacio vacío \begin{align} \boldsymbol{\nabla} \boldsymbol{\times} \mathbf{E} & = -\frac{\partial \mathbf{B}}{\partial t} \tag{001a}\\ \boldsymbol{\nabla} \boldsymbol{\times} \mathbf{B} & = \mu_{0}\mathbf{j}+\frac{1}{c^{2}}\frac{\partial \mathbf{E}}{\partial t} \tag{001b}\\ \nabla \boldsymbol{\cdot} \mathbf{E} & = \frac{\rho}{\epsilon_{0}} \tag{001c}\\ \nabla \boldsymbol{\cdot}\mathbf{B}& = 0 \tag{001d} \end{align} de las ecuaciones de Euler-Lagrange \begin{equation} \boxed{\: \dfrac{\partial }{\partial t}\left(\dfrac{\partial \mathcal{L}}{\partial \dot{\eta}_{\jmath}}\right) + \nabla \boldsymbol{\cdot}\left[\dfrac{\partial \mathcal{L}}{\partial \left(\boldsymbol{\nabla}\eta_{\jmath}\right)}\right]- \frac{\partial \mathcal{L}}{\partial \eta_{\jmath}}=0, \quad \left(\jmath=1,2,3,4\right) \:} \tag{002} \end{equation} donde \begin{equation} \mathcal{L}=\mathcal{L}\left(\eta_{\jmath}, \dot{\eta}_{\jmath}, \boldsymbol{\nabla}\eta_{\jmath}\right) \qquad \left(\jmath=1,2,3,4\right) \tag{003} \end{equation} es la densidad lagrangiana de la pregunta (excepto un factor constante) \begin{equation} \boxed{\: \mathcal{L}=\dfrac{\Vert\mathbf{E}\Vert^{2}-c^{2}\Vert\mathbf{B}\Vert^{2}}{2}+\dfrac{1}{\epsilon_{0}}\left( -\rho \phi + \mathbf{j}\boldsymbol{\cdot}\mathbf{A}\right) \:} \tag{004} \end{equation} y $\:\eta_{\jmath}\left( x_{1},x_{2},x_{3},t\right), \:\:\jmath=1,2,3,4\:$ los componentes $\:A_{1},\:A_{2},\:A_{3},\phi\:$ del vector 4 del potencial EM, respectivamente. En cierto sentido, esta derivación se construye sobre la inversa ( : esta de encontrar una densidad lagrangiana propia a partir de las ecuaciones de Maxwell) moviéndose hacia atrás, ver mi respuesta aquí : Derivación de la densidad lagrangiana para el campo electromagnético
1. Sección principal
Primero expresamos $\:\mathbf{E},\mathbf{B}\:$ de (004) en términos de los componentes potenciales de 4 vectores $\:A_{1},\:A_{2},\:A_{3},\phi\:$ \begin{align} \mathbf{B} & = \boldsymbol{\nabla} \boldsymbol{\times} \mathbf{A} \tag{005a}\\ \mathbf{E} & = -\boldsymbol{\nabla}\phi -\dfrac{\partial \mathbf{A}}{\partial t} = -\boldsymbol{\nabla}\phi - \mathbf{\dot{A}} \tag{005b} \end{align} A partir de (005) las ecuaciones de Maxwell (001a) y (001d) son válidas automáticamente. Así que las cuatro(4) ecuaciones escalares de Maxwell (001b) y (001c) deben derivarse de las cuatro(4) ecuaciones escalares de Euler-Lagrange (002). Además, es razonable suponer que la ecuación vectorial (001b) debe derivarse de (002) con respecto a las componentes del potencial vectorial $\:\mathbf{A}=\left(A_{1},\:A_{2},\:A_{3}\right)\:$ mientras que la ecuación escalar (001c) debe derivarse de (002) con respecto al potencial escalar $\:\phi\:$ .
A partir de las ecuaciones (005) expresamos la densidad lagrangiana (004) en términos de las componentes del vector 4 potencial $\:A_{1},\:A_{2},\:A_{3},\phi\:$ : \begin{align} \left\Vert\mathbf{E}\right\Vert^{2} & = \left\Vert - \boldsymbol{\nabla}\phi -\dfrac{\partial \mathbf{A}}{\partial t}\right\Vert^{2} = \left\Vert \mathbf{\dot{A}}\right\Vert^{2}+\Vert \boldsymbol{\nabla}\phi \Vert^{2}+2\left(\boldsymbol{\nabla}\phi \boldsymbol{\cdot} \mathbf{\dot{A}}\right) \tag{006a}\\ & \nonumber\\ \left\Vert\mathbf{B}\right\Vert^{2} & = \left\Vert\boldsymbol{\nabla} \boldsymbol{\times} \mathbf{A}\right\Vert^{2} \equiv \sum^{k=3}_{k=1}\left[\Vert \boldsymbol{\nabla}\mathrm{A}_{k}\Vert^{2}-\dfrac{\partial \mathbf{A}}{\partial x_{k}}\boldsymbol{\cdot} \boldsymbol{\nabla}\mathrm{A}_{k}\right] \tag{006b} \end{align} La segunda ecuación de (006b), que es la identidad \begin{equation} \left\Vert\boldsymbol{\nabla} \boldsymbol{\times} \mathbf{A}\right\Vert^{2} \equiv \sum^{k=3}_{k=1}\left[\Vert \boldsymbol{\nabla}\mathrm{A}_{k}\Vert^{2}-\dfrac{\partial \mathbf{A}}{\partial x_{k}}\boldsymbol{\cdot} \boldsymbol{\nabla}\mathrm{A}_{k}\right] \tag{Id-01} \end{equation} se demuestra en 2. Sección de Identidades . Insertando las expresiones (006) en (004) la densidad lagrangiana es \begin{equation} \mathcal{L}=\underbrace{\tfrac{1}{2}\left\Vert \mathbf{\dot{A}}\right\Vert^{2}+\tfrac{1}{2}\Vert \boldsymbol{\nabla}\phi \Vert^{2}+\boldsymbol{\nabla}\phi \boldsymbol{\cdot} \mathbf{\dot{A}}}_{\tfrac{1}{2}\left\Vert - \boldsymbol{\nabla}\phi -\frac{\partial \mathbf{A}}{\partial t}\right\Vert^{2}}-\tfrac{1}{2}c^{2}\underbrace{\sum^{k=3}_{k=1}\left[\Vert \boldsymbol{\nabla}\mathrm{A}_{k}\Vert^{2}-\frac{\partial \mathbf{A}}{\partial x_{k}}\boldsymbol{\cdot} \boldsymbol{\nabla}\mathrm{A}_{k}\right]}_{\left\Vert \boldsymbol{\nabla} \boldsymbol{\times} \mathbf{A}\right\Vert^{2}}+\frac{1}{\epsilon_{0}}\left( -\rho \phi + \mathbf{j}\boldsymbol{\cdot} \mathbf{A}\right) \tag{007} \end{equation}
Reordenamos los elementos de (007) de la siguiente manera :
\begin{align} \mathcal{L} & = \overbrace{\tfrac{1}{2}\Vert \boldsymbol{\nabla}\phi \Vert^{2}-\frac{\rho \phi}{\epsilon_{0}}+\boldsymbol{\nabla}\phi \boldsymbol{\cdot} \mathbf{\dot{A}}}^{\mathcal{L}_{\phi}=\text{with respect to }\phi}+\tfrac{1}{2}\left\Vert \mathbf{\dot{A}}\right\Vert^{2}+\tfrac{1}{2}c^{2}\sum^{k=3}_{k=1}\left[\frac{\partial \mathbf{A}}{\partial x_{k}} \boldsymbol{\cdot} \boldsymbol{\nabla}\mathrm{A}_{k}-\Vert \boldsymbol{\nabla}\mathrm{A}_{k}\Vert^{2}\right]+\frac{\mathbf{j} \boldsymbol{\cdot} \mathbf{A}}{\epsilon_{0}} \tag{008a}\\ \mathcal{L} & = \tfrac{1}{2}\Vert \boldsymbol{\nabla}\phi \Vert^{2}-\frac{\rho \phi}{\epsilon_{0}}+\underbrace{\boldsymbol{\nabla}\phi\boldsymbol{\cdot} \mathbf{\dot{A}}+\tfrac{1}{2}\left\Vert \mathbf{\dot{A}}\right\Vert^{2}+\tfrac{1}{2}c^{2}\sum^{k=3}_{k=1}\left[\frac{\partial \mathbf{A}}{\partial x_{k}} \boldsymbol{\cdot} \boldsymbol{\nabla}\mathrm{A}_{k}-\Vert\boldsymbol{\nabla}\mathrm{A}_{k}\Vert^{2}\right]+\frac{\mathbf{j}\boldsymbol{\cdot} \mathbf{A}}{\epsilon_{0}}}_{\mathcal{L}_{\mathbf{A}}=\text{with respect to }\mathbf{A}} \tag{008b} \end{align}
El $\:\mathcal{L}_{\phi}\:$ parte de la densidad contiene todos los $\:\phi$ -y razonablemente participarán solos en la derivación de la ecuación de Maxwell (001c) a partir de la ecuación de Euler-Lagrange (002) con respecto a $\:\eta_{4}=\phi\:$ . El $\:\mathcal{L}_{\mathbf{A}}\:$ parte de la densidad contiene todos los $\: \mathbf{A}$ -y razonablemente participarán solos en la derivación de la ecuación de Maxwell (001b) a partir de las ecuaciones de Euler-Lagrange (002) con respecto a $\:\eta_{1},\eta_{2},\eta_{3}=A_{1},A_{1},A_{3}\:$ . Obsérvese el término común $\:\boldsymbol{\nabla}\phi \boldsymbol{\cdot} \mathbf{\dot{A}}\:$ de las partes $\:\mathcal{L}_{\phi},\mathcal{L}_{\mathbf{A}}\:$ .
La ecuación de Euler-Lagrange con respecto a $\:\eta_{4}=\phi\:$ es : \begin{equation} \dfrac{\partial }{\partial t}\overbrace{\left(\dfrac{\partial \mathcal{L}}{\partial \dot{\phi}}\right)}^{0} +\nabla \boldsymbol{\cdot}\overbrace{\left[\dfrac{\partial \mathcal{L}}{\partial \left(\boldsymbol{\nabla}\phi\right)}\right]}^{\boldsymbol{\nabla}\phi+\mathbf{\dot{A}}}-\overbrace{\frac{\partial \mathcal{L}}{\partial \phi}}^{-\frac{\rho }{\epsilon_{0}}}=0 \tag{009} \end{equation} o \begin{equation} \nabla \boldsymbol{\cdot}\underbrace{\left(-\boldsymbol{\nabla}\phi -\frac{\partial \mathbf{A}}{\partial t}\right)}_{\mathbf{E}}= \frac{\rho }{\epsilon_{0}} \tag{010} \end{equation} que es la ecuación de Maxwell (001c) \begin{equation} \nabla \boldsymbol{\cdot}\mathbf{E} = \frac{\rho}{\epsilon_{0}} \tag{001c} \end{equation}
Para derivar la ecuación de Maxwell (001b) la expresamos con la ayuda de las ecuaciones (005) en términos de las componentes del potencial de 4 vectores $\:A_{1},\:A_{2},\:A_{3},\phi\:$ : \begin{equation} \boldsymbol{\nabla} \boldsymbol{\times} \left(\boldsymbol{\nabla} \boldsymbol{\times} \mathbf{A}\right) =\mu_{0}\mathbf{j}+\frac{1}{c^{2}}\frac{\partial }{\partial t}\left(-\boldsymbol{\nabla}\phi -\frac{\partial \mathbf{A}}{\partial t}\right) \tag{011} \end{equation} Utilizando la identidad \begin{equation} \boldsymbol{\nabla} \boldsymbol{\times} \left( \boldsymbol{\nabla} \boldsymbol{\times} \mathbf{A}\right) =\boldsymbol{\nabla}\left(\nabla \boldsymbol{\cdot}\mathbf{A}\right)- \nabla^{2}\mathbf{A} \tag{012} \end{equation} La ec.(011) da como resultado \begin{equation} \frac{1}{c^{2}}\frac{\partial^{2}\mathbf{A}}{\partial t^{2}}-\nabla^{2}\mathbf{A}+ \boldsymbol{\nabla}\left(\nabla \boldsymbol{\cdot} \mathbf{A}+\frac{1}{c^{2}}\frac{\partial \phi}{\partial t}\right) =\mu_{0}\mathbf{j} \tag{013} \end{equation} El $\:k$ -de la ec.(013) se expresa adecuadamente para que parezca una ecuación de Euler-Lagrange como sigue : \begin{equation} \dfrac{\partial}{\partial t}\left(\frac{\partial \mathrm{A}_{k}}{\partial t}+\frac{\partial \phi}{\partial x_{k}}\right)+\nabla \boldsymbol{\cdot} \left[c^{2}\left(\frac{\partial \mathbf{A}}{\partial x_{k}}- \boldsymbol{\nabla}\mathrm{A}_{k}\right)\right] -\frac{\mathrm{j}_{k}}{\epsilon_{0}}=0 \tag{014} \end{equation} Basta con llegar a la ecuación anterior (014) a partir de la ecuación de Euler-Lagrange (002) con respecto a $\:\eta_{k}=A_{k},\:\: k=1,2,3\:$ :
\begin{equation} \dfrac{\partial }{\partial t}\left(\dfrac{\partial \mathcal{L}}{\partial \dot{A}_{k}}\right) + \nabla \boldsymbol{\cdot}\left[\dfrac{\partial \mathcal{L}}{\partial \left(\boldsymbol{\nabla}A_{k}\right)}\right]- \frac{\partial \mathcal{L}}{\partial A_{k}}=0 \tag{015} \end{equation}
Ahora \begin{equation} \dfrac{\partial\mathcal{L} }{\partial \dot{A}_{k}}=\dfrac{\partial }{\partial \dot{A}_{k}}\left( \boldsymbol{\nabla}\phi \boldsymbol{\cdot} \mathbf{\dot{A}}+\tfrac{1}{2}\left\Vert \mathbf{\dot{A}}\right\Vert^{2}\right)=\frac{\partial \phi}{\partial x_{k}}+\frac{\partial \mathrm{A}_{k}}{\partial t} \tag{016a} \end{equation}
\begin{equation} \frac{\partial \mathcal{L}}{\partial A_{k}}=\frac{\partial }{\partial A_{k}}\left(\frac{\mathbf{j} \boldsymbol{\cdot} \mathbf{A}}{\epsilon_{0}}\right)=\frac{\mathrm{j}_{k}}{\epsilon_{0}} \tag{016b} \end{equation} y \begin{equation} \dfrac{\partial \mathcal{L}}{\partial \left(\boldsymbol{\nabla}A_{k}\right)}=\dfrac{\partial}{\partial\left(\boldsymbol{\nabla}A_{k}\right)}\left(\tfrac{1}{2}c^{2}\sum^{k=3}_{k=1}\left[\frac{\partial \mathbf{A}}{\partial x_{k}} \boldsymbol{\cdot} \boldsymbol{\nabla}\mathrm{A}_{k}-\Vert \boldsymbol{\nabla}\mathrm{A}_{k}\Vert^{2}\right]\right)=c^{2}\left(\frac{\partial \mathbf{A}}{\partial x_{k}}- \boldsymbol{\nabla}\mathrm{A}_{k}\right) \tag{016c} \end{equation} La última ecuación de (016c) es válida debido a la identidad (Id-02) demostrada en 2. Sección de Identidades : \begin{equation} \dfrac{\partial \left( \left|\!\left| \boldsymbol{\nabla} \boldsymbol{\times} \mathbf{A}\right|\!\right|^{2}\right) }{\partial \left(\boldsymbol{\nabla}\mathrm{A}_{k}\right)}=\dfrac{\partial}{\partial \left(\boldsymbol{\nabla}\mathrm{A}_{k}\right)}\left(\sum^{k=3}_{k=1}\left[\frac{\partial \mathbf{A}}{\partial x_{k}} \boldsymbol{\cdot} \boldsymbol{\nabla}\mathrm{A}_{k}-\Vert \boldsymbol{\nabla}\mathrm{A}_{k}\Vert^{2}\right]\right) =2\left( \boldsymbol{\nabla}\mathrm{A}_{k}-\frac{\partial \mathbf{A}}{\partial x_{k}}\right) \tag{Id-02} \end{equation} Utilizando las expresiones de las ecuaciones (016) la ecuación de Euler-Lagrange (015) da (014) y así la ecuación de Maxwell (001b).
2. Sección de Identidades
Si $\: \mathbf{A}= \left( \mathrm{A}_{1}, \mathrm{A}_{2}, \mathrm{A}_{3}\right) \:$ es una función vectorial de las coordenadas cartesianas $\:\left( x_{1},x_{2},x_{3}\right)\:$ entonces \begin{equation} \left\Vert\boldsymbol{\nabla} \boldsymbol{\times} \mathbf{A}\right\Vert^{2} \equiv \sum^{k=3}_{k=1}\left[\Vert \boldsymbol{\nabla}\mathrm{A}_{k}\Vert^{2}-\dfrac{\partial \mathbf{A}}{\partial x_{k}}\boldsymbol{\cdot} \boldsymbol{\nabla}\mathrm{A}_{k}\right] \tag{Id-01} \end{equation} y
\begin{equation} \dfrac{\partial \left( \left|\!\left| \boldsymbol{\nabla} \boldsymbol{\times} \mathbf{A}\right|\!\right|^{2}\right) }{\partial \left(\boldsymbol{\nabla}\mathrm{A}_{k}\right)}=\dfrac{\partial}{\partial \left(\boldsymbol{\nabla}\mathrm{A}_{k}\right)}\left(\sum^{k=3}_{k=1}\left[\frac{\partial \mathbf{A}}{\partial x_{k}} \boldsymbol{\cdot} \boldsymbol{\nabla}\mathrm{A}_{k}-\Vert \boldsymbol{\nabla}\mathrm{A}_{k}\Vert^{2}\right]\right) =2\left( \boldsymbol{\nabla}\mathrm{A}_{k}-\frac{\partial \mathbf{A}}{\partial x_{k}}\right) \tag{Id-02} \end{equation} donde la derivada funcional del lado izquierdo se define como \begin{equation} \dfrac{\partial \left( \left|\!\left| \boldsymbol{\nabla} \boldsymbol{\times} \mathbf{A}\right|\!\right|^{2}\right) }{\partial \left(\boldsymbol{\nabla}\mathrm{A}_{k}\right)}\equiv \left[\dfrac{\partial \left( \left|\!\left| \boldsymbol{\nabla} \boldsymbol{\times} \mathbf{A}\right|\!\right|^{2}\right) }{\partial \left(\dfrac{\partial \mathrm{A}_{k}}{\partial x_{1}}\right)},\dfrac{\partial \left( \left|\!\left| \boldsymbol{\nabla} \boldsymbol{\times} \mathbf{A}\right|\!\right|^{2}\right) }{\partial \left(\dfrac{\partial \mathrm{A}_{k}}{\partial x_{2}}\right)},\dfrac{\partial \left( \left|\!\left| \boldsymbol{\nabla} \boldsymbol{\times} \mathbf{A}\right|\!\right|^{2}\right) }{\partial \left(\dfrac{\partial \mathrm{A}_{k}}{\partial x_{3}}\right)} \right] \tag{Id-03} \end{equation} Prueba de la ecuación (Id-01) : \begin{eqnarray*} && \left|\!\left| \boldsymbol{\nabla} \boldsymbol{\times} \mathbf{A}\right|\!\right|^{2} =\left(\frac{\partial A_{3}}{\partial x_{2}}-\frac{\partial A_{2}}{\partial x_{3}}\right)^{2}+\left(\frac{\partial A_{1}}{\partial x_{3}}-\frac{\partial A_{3}}{\partial x_{1}}\right)^{2}+\left(\frac{\partial A_{2}}{\partial x_{1}}-\frac{\partial A_{1}}{\partial x_{2}}\right)^{2}\\ %---------------------------------------- &=& \left[\left(\frac{\partial A_{1}}{\partial x_{2}}\right)^{2}+\left(\frac{\partial A_{1}}{\partial x_{3}}\right)^{2}\right]+\left[\left(\frac{\partial A_{2}}{\partial x_{1}}\right)^{2}+\left(\frac{\partial A_{2}}{\partial x_{3}}\right)^{2}\right]+\left[\left(\frac{\partial A_{3}}{\partial x_{1}}\right)^{2}+\left(\frac{\partial A_{3}}{\partial x_{2}}\right)^{2}\right] \\ %---------------------------------------- &&-2\left[\frac{\partial A_{1}}{\partial x_{2}}\frac{\partial A_{2}}{\partial x_{1}} +\frac{\partial A_{2}}{\partial x_{3}}\frac{\partial A_{3}}{\partial x_{2}}+\frac{\partial A_{3}}{\partial x_{1}}\frac{\partial A_{1}}{\partial x_{3}}\right]\\ %---------------------------------------- &=& \left[\left(\frac{\partial A_{1}}{\partial x_{1}}\right)^{2}+\left(\frac{\partial A_{1}}{\partial x_{2}}\right)^{2}+\left(\frac{\partial A_{1}}{\partial x_{3}}\right)^{2}\right] +\left[\left(\frac{\partial A_{2}}{\partial x_{1}}\right)^{2}+\left(\frac{\partial A_{2}}{\partial x_{2}}\right)^{2}+\left(\frac{\partial A_{2}}{\partial x_{3}}\right)^{2}\right] \\ %---------------------------------------- &&+\left[\left(\frac{\partial A_{3}}{\partial x_{1}}\right)^{2}+\left(\frac{\partial A_{3}}{\partial x_{2}}\right)^{2}+\left(\frac{\partial A_{3}}{\partial x_{3}}\right)^{2}\right] -\left[\left(\frac{\partial A_{1}}{\partial x_{1}}\right)^{2}+\left(\frac{\partial A_{2}}{\partial x_{2}}\right)^{2}+\left(\frac{\partial A_{3}}{\partial x_{3}}\right)^{2}\right]\\ %---------------------------------------- &&-2\left[\frac{\partial A_{1}}{\partial x_{2}}\frac{\partial A_{2}}{\partial x_{1}}+\frac{\partial A_{2}}{\partial x_{3}}\frac{\partial A_{3}}{\partial x_{2}}+\frac{\partial A_{3}}{\partial x_{1}}\frac{\partial A_{1}}{\partial x_{3}}\right]\\ %---------------------------------------- &=& \Vert \boldsymbol{\nabla}\mathrm{A}_{1}\Vert^{2}+\Vert \boldsymbol{\nabla}\mathrm{A}_{2}\Vert^{2}+\Vert \boldsymbol{\nabla}\mathrm{A}_{3}\Vert^{2}-\left(\frac{\partial A_{1}}{\partial x_{1}}\frac{\partial A_{1}}{\partial x_{1}}+\frac{\partial A_{2}}{\partial x_{1}}\frac{\partial A_{1}}{\partial x_{2}}+ \frac{\partial A_{3}}{\partial x_{1}}\frac{\partial A_{1}}{\partial x_{3}} \right)\\ %---------------------------------------- &&-\left(\frac{\partial A_{1}}{\partial x_{2}}\frac{\partial A_{2}}{\partial x_{1}}+\frac{\partial A_{2}}{\partial x_{2}}\frac{\partial A_{2}}{\partial x_{2}}+ \frac{\partial A_{3}}{\partial x_{2}}\frac{\partial A_{2}}{\partial x_{3}} \right)-\left(\frac{\partial A_{1}}{\partial x_{3}}\frac{\partial A_{3}}{\partial x_{1}}+\frac{\partial A_{2}}{\partial x_{3}}\frac{\partial A_{3}}{\partial x_{2}}+ \frac{\partial A_{3}}{\partial x_{3}}\frac{\partial A_{3}}{\partial x_{3}} \right)\\ %---------------------------------------- &=& \Vert \boldsymbol{\nabla}\mathrm{A}_{1}\Vert^{2}+\Vert \boldsymbol{\nabla}\mathrm{A}_{2}\Vert^{2}+\Vert \boldsymbol{\nabla}\mathrm{A}_{3}\Vert^{2}- \frac{\partial \mathbf{A}}{\partial x_{1}}\boldsymbol{\cdot} \boldsymbol{\nabla}\mathrm{A}_{1}-\frac{\partial \mathbf{A}}{\partial x_{2}}\boldsymbol{\cdot} \boldsymbol{\nabla}\mathrm{A}_{2}-\frac{\partial \mathbf{A}}{\partial x_{3}}\boldsymbol{\cdot} \boldsymbol{\nabla}\mathrm{A}_{3}\\ %---------------------------------------- &=&\sum^{k=3}_{k=1}\left[\Vert \boldsymbol{\nabla}\mathrm{A}_{k}\Vert^{2}-\frac{\partial \mathbf{A}}{\partial x_{k}} \boldsymbol{\cdot} \boldsymbol{\nabla}\mathrm{A}_{k}\right] \end{eqnarray*} Prueba de la ecuación (Id-02) : A partir de la ecuación \begin{eqnarray*} && \left|\!\left| \boldsymbol{\nabla} \boldsymbol{\times} \mathbf{A}\right|\!\right|^{2} =\left(\frac{\partial A_{3}}{\partial x_{2}}-\frac{\partial A_{2}}{\partial x_{3}}\right)^{2}+\left(\frac{\partial A_{1}}{\partial x_{3}}-\frac{\partial A_{3}}{\partial x_{1}}\right)^{2}+\left(\frac{\partial A_{2}}{\partial x_{1}}-\frac{\partial A_{1}}{\partial x_{2}}\right)^{2}\\ %---------------------------------------- &=& \left[\left(\frac{\partial A_{1}}{\partial x_{2}}\right)^{2}+\left(\frac{\partial A_{1}}{\partial x_{3}}\right)^{2}\right]+\left[\left(\frac{\partial A_{2}}{\partial x_{1}}\right)^{2}+\left(\frac{\partial A_{2}}{\partial x_{3}}\right)^{2}\right]+\left[\left(\frac{\partial A_{3}}{\partial x_{1}}\right)^{2}+\left(\frac{\partial A_{3}}{\partial x_{2}}\right)^{2}\right] \\ %---------------------------------------- &&-2\left[\frac{\partial A_{1}}{\partial x_{2}}\frac{\partial A_{2}}{\partial x_{1}} +\frac{\partial A_{2}}{\partial x_{3}}\frac{\partial A_{3}}{\partial x_{2}}+\frac{\partial A_{3}}{\partial x_{1}}\frac{\partial A_{1}}{\partial x_{3}}\right] \end{eqnarray*} tenemos \begin{eqnarray*} \dfrac{\partial \left( \left|\!\left| \boldsymbol{\nabla} \boldsymbol{\times} \mathbf{A}\right|\!\right|^{2}\right) }{\partial \left(\dfrac{\partial \mathrm{A}_{1}}{\partial x_{1}}\right)} &=& 0 =2\left(\dfrac{\partial \mathrm{A}_{1}}{\partial x_{1}}-\dfrac{\partial \mathrm{A}_{1}}{\partial x_{1}} \right)\\ \dfrac{\partial \left( \left|\!\left| \boldsymbol{\nabla} \boldsymbol{\times} \mathbf{A}\right|\!\right|^{2}\right) }{\partial \left(\dfrac{\partial \mathrm{A}_{1}}{\partial x_{2}}\right)} &=& 2\left(\dfrac{\partial \mathrm{A}_{1}}{\partial x_{2}}-\dfrac{\partial \mathrm{A}_{2}}{\partial x_{1}} \right) \\ \dfrac{\partial \left( \left|\!\left| \boldsymbol{\nabla} \boldsymbol{\times} \mathbf{A}\right|\!\right|^{2}\right) }{\partial \left(\dfrac{\partial \mathrm{A}_{1}}{\partial x_{3}}\right)} &=& 2\left(\dfrac{\partial \mathrm{A}_{1}}{\partial x_{3}}-\dfrac{\partial \mathrm{A}_{3}}{\partial x_{1}} \right) \end{eqnarray*} Así que \begin{equation*} \dfrac{\partial \left( \left|\!\left| \boldsymbol{\nabla} \boldsymbol{\times} \mathbf{A}\right|\!\right|^{2}\right) }{\partial \left(\boldsymbol{\nabla}\mathrm{A}_{1}\right)}= 2\left( \boldsymbol{\nabla}\mathrm{A}_{1}-\frac{\partial \mathbf{A}}{\partial x_{1}}\right) \end{equation*} demostrando la ecuación (Id-02) para $\:k=1\:$ y de forma similar para los otros dos componentes $\:k=2,3$ .