He tratado de replicar los resultados de la opción de Stata robust
en R. He utilizado el rlm
del paquete MASS y también el comando lmrob
del paquete "robustbase". En ambos casos, los resultados son bastante diferentes de la opción "robusta" de Stata. ¿Puede alguien sugerir algo en este contexto?
Estos son los resultados que obtuve al ejecutar la opción robusta en Stata:
. reg yb7 buildsqb7 no_bed no_bath rain_harv swim_pl pr_terrace, robust
Linear regression Number of obs = 4451
F( 6, 4444) = 101.12
Prob > F = 0.0000
R-squared = 0.3682
Root MSE = .5721
------------------------------------------------------------------------------
| Robust
yb7 | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
buildsqb7 | .0046285 .0026486 1.75 0.081 -.0005639 .009821
no_bed | .3633841 .0684804 5.31 0.000 .2291284 .4976398
no_bath | .0832654 .0706737 1.18 0.239 -.0552904 .2218211
rain_harv | .3337906 .0395113 8.45 0.000 .2563289 .4112524
swim_pl | .1627587 .0601765 2.70 0.007 .0447829 .2807346
pr_terrace | .0032754 .0178881 0.18 0.855 -.0317941 .0383449
_cons | 13.68136 .0827174 165.40 0.000 13.51919 13.84353
Y esto es lo que he obtenido en R con la opción lmrob:
> modelb7<-lmrob(yb7~Buildsqb7+No_Bed+Rain_Harv+Swim_Pl+Gym+Pr_Terrace, data<-bang7)
> summary(modelb7)
Call:
lmrob(formula = yb7 ~ Buildsqb7 + No_Bed + Rain_Harv + Swim_Pl + Gym + Pr_Terrace,
data = data <- bang7)
\--> method = "MM"
Residuals:
Min 1Q Median 3Q Max
-51.03802 -0.12240 0.02088 0.18199 8.96699
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 12.648261 0.055078 229.641 <2e-16 ***
Buildsqb7 0.060857 0.002050 29.693 <2e-16 ***
No_Bed 0.005629 0.019797 0.284 0.7762
Rain_Harv 0.230816 0.018290 12.620 <2e-16 ***
Swim_Pl 0.065199 0.028121 2.319 0.0205 *
Gym 0.023024 0.014655 1.571 0.1162
Pr_Terrace 0.015045 0.013951 1.078 0.2809
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Robust residual standard error: 0.1678
Multiple R-squared: 0.8062, Adjusted R-squared: 0.8059