Si $f$ es uniformemente continua en $(a,b)$ es $f$ uniformemente continua en $[a.b]$ ?
Desde $f$ es uniformemente continua en el intervalo abierto y $a$ , $b$ son puntos de acumulación del intervalo abierto, $f$ es continua en $a$ y $b$ . Sin embargo, me pregunto si $f$ es uniformemente continua en $[a,b]$ ? Mi profesor dijo que podemos utilizar el teorema de Tietze para extender la continua uniforme de un intervalo abierto a un intervalo cerrado. Sólo puedo demostrar que es continua en el intervalo cerrado.