Probar o refutar que para todo natural $n$
$$6^{2^n}+ 8^{2^n} +12^{2^n}+14^{2^n}+16^{2^n}+18^{2^n} +24^{2^n} +28^{2^n}+42^{2^n}$$
is divisible by $259$.
I tried to apply mathematical induction, but the step is overly cumbersome.
Some thoughts. Since $2^{2^{n+1}}=(2^{2^n})^2$‚ it is fairly easy to get:
$\begin{array}{c|ccccc} \mod & 7 & 37 \\ \hline 6^2 &1 &36 \\ 6^4 &1 &1 \\ 6^8 &1 &1 \\ 6^{16} &1 &1 \\ 6^{32} &1 &1 \\ 6^{64} &1 &1 \\ 6^{128} &1 &1 \end{array}$ $\begin{array}{c|ccccc} \mod & 7 & 37 \\ \hline 8^2 &1 &27 \\ 8^4 &1 &26 \\ 8^8 &1 &10 \\ 8^{16} &1 &26 \\ 8^{32} &1 &10 \\ 8^{64} &1 &26 \\ 8^{128} &1 &10 \end{array}$ $\begin{array}{c|ccccc} \mod & 7 & 37 \\ \hline 12^2 &4 &33 \\ 12^4 &2 &16 \\ 12^8 &4 &34 \\ 12^{16} &2 &9 \\ 12^{32} &4 &7 \\ 12^{64} &2 &12 \\ 12^{128} &4 &33 \end{array}$
$\begin{array}{c|ccccc} \mod & 7 & 37 \\ \hline 14^2 &0 &11 \\ 14^4 &0 &10 \\ 14^8 &0 &26 \\ 14^{16} &0 &10 \\ 14^{32} &0 &26 \\ 14^{64} &0 &10 \\ 14^{128} &0 &26 \end{array}$ $\begin{array}{c|ccccc} \mod & 7 & 37 \\ \hline 16^2 &4 &34 \\ 16^4 &2 &9 \\ 16^8 &4 &7 \\ 16^{16} &2 &12 \\ 16^{32} &4 &33 \\ 16^{64} &2 &16 \\ 16^{128} &4 &34 \end{array}$ $\begin{array}{c|ccccc} \mod & 7 & 37 \\ \hline 18^2 &2 &28 \\ 18^4 &4 &7 \\ 18^8 &2 &12 \\ 18^{16} &4 &33 \\ 18^{32} &2 &16 \\ 18^{64} &4 &34 \\ 18^{128} &2 &9 \end{array}$
$\begin{array}{c|ccccc} \mod & 7 & 37 \\ \hline 24^2 &2 &21 \\ 24^4 &4 &34 \\ 24^8 &2 &9 \\ 24^{16} &4 &7 \\ 24^{32} &2 &12 \\ 24^{64} &4 &33 \\ 24^{128} &2 &21 \end{array}$ $\begin{array}{c|ccccc} \mod & 7 & 37 \\ \hline 28^2 &0 &7 \\ 28^4 &0 &12 \\ 28^8 &0 &33 \\ 28^{16} &0 &16 \\ 28^{32} &0 &34 \\ 28^{64} &0 &9 \\ 28^{128} &0 &7 \end{array}$ $\begin{array}{c|ccccc} \mod & 7 & 37 \\ \hline 42^2 &0 &25 \\ 42^4 &0 &33 \\ 42^8 &0 &16 \\ 42^{16} &0 &34 \\ 42^{32} &0 &9 \\ 42^{64} &0 &7 \\ 42^{128} &0 &12 \end{array}$
Algunas código de Mathematica:
Format[primeFactorsFormat[n_Integer]] :=
CenterDot @@ Superscript @@@ FactorInteger[n] //. _[x_] | _[x_, 1] :> x
tab = Table[{n, primeFactorsFormat[
6^2^n + 8^2^n + 12^2^n + 14^2^n + 16^2^n +
18^2^n + 24^2^n + 28^2^n + 42^2^n]}, {n, 1, 5}];
TableForm[tab, TableHeadings -> {None, {"n", "factorization"}}]