¿Qué ha fallado en mi cálculo?
Dado $F(x,y,z)=0$ , $F_x\neq 0 , F_y\neq 0, F_z\neq 0$ y $z=f(x,y), y=g(x,z), x=h(y,z)$
$F_x\quad\,+F_y\frac{\partial y}{\partial x} + F_z \frac{\partial z}{\partial x} = 0\\ F_x\frac{\partial x}{\partial y}+F_y\quad\,+F_z\frac{\partial z}{\partial y}=0$
Entonces tenemos:
$F_y(\frac{\partial x}{\partial y}\frac{\partial y}{\partial x}-1)+F_z(\frac{\partial z}{\partial x}\frac{\partial x}{\partial y}-\frac{\partial z}{\partial y}) =0$
Dejemos que $P(x,y)=F(x,y,f(x,y))\\ P_x+P_y\frac{\partial y}{\partial x}=0\\ \frac{\partial y}{\partial x} = -\frac{P_x}{P_y}, similarly, \frac{\partial x}{\partial y} = -\frac{P_y}{P_x}, \frac{\partial x}{\partial y}\frac{\partial y}{\partial x} = 1$
$F_y(1-1)+F_z(\frac{\partial z}{\partial x} \frac{\partial x}{\partial y} - \frac{\partial z}{\partial y}) = 0\\ \frac{\partial z}{\partial x}\frac{\partial x}{\partial y} - \frac{\partial z}{\partial y}=0\\ \frac{\partial z}{\partial x}\frac{\partial x}{\partial y}\frac{\partial y}{\partial z} -\frac{\partial z}{\partial y}\frac{\partial y}{\partial z} = 0\\ \frac{\partial z}{\partial x}\frac{\partial x}{\partial y}\frac{\partial y}{\partial z} = 1$