Podemos utilizar la siguiente representación integral para la función gamma incompleta ( DLMF ref. ver identidad 8.6.4 ):
$$\Gamma{\left(\alpha,z\right)}=\frac{z^{\alpha}e^{-z}}{\Gamma{\left(1-\alpha\right)}}\int_{0}^{\infty}\frac{t^{-\alpha}e^{-t}}{z+t}\,\mathrm{d}t;~~~\small{\left|\arg{\left(z\right)}\right|<\pi,~\Re{\left(\alpha\right)}<1}.$$
Dado $n\in\mathbb{N}^{+}\land a,b,\epsilon\in\mathbb{R}\land1<a\land1\le b\le n\land0<\epsilon$ , defina $I_{n}{\left(a,b;\epsilon\right)}$ a través de la integral
$$I_{n}{\left(a,b;\epsilon\right)}=\int_{-\infty}^{\infty}\mathrm{d}x\,\frac{2ie^{-ibx}\left(bx-i\right)\left[a\left(-ix\right)^{a}\,\Gamma{\left(-a,-ix\right)}\right]^{n}}{x^{2}+\epsilon^{2}}.$$
Entonces,
$$\begin{align} I_{n}{\left(a,b;\epsilon\right)} &=\int_{-\infty}^{\infty}\mathrm{d}x\,\frac{2ie^{-ibx}\left(bx-i\right)\left[a\left(-ix\right)^{a}\,\Gamma{\left(-a,-ix\right)}\right]^{n}}{x^{2}+\epsilon^{2}}\\ &=\int_{-\infty}^{\infty}\mathrm{d}x\,\frac{2ie^{-ibx}\left(bx-i\right)}{x^{2}+\epsilon^{2}}\left[\frac{e^{ix}}{\Gamma{\left(a\right)}}\int_{0}^{\infty}\frac{t^{a}e^{-t}}{t-ix}\,\mathrm{d}t\right]^{n}\\ &=\frac{1}{\left[\Gamma{\left(a\right)}\right]^{n}}\int_{-\infty}^{\infty}\mathrm{d}x\,\frac{2ie^{-ibx}\left(bx-i\right)}{x^{2}+\epsilon^{2}}e^{inx}\left[\int_{0}^{\infty}\frac{t^{a}e^{-t}}{t-ix}\,\mathrm{d}t\right]^{n}\\ &=\frac{2i}{\left[\Gamma{\left(a\right)}\right]^{n}}\int_{-\infty}^{\infty}\mathrm{d}x\,\frac{\left(bx-i\right)e^{i\left(n-b\right)x}}{x^{2}+\epsilon^{2}}\left[\int_{0}^{\infty}\frac{t^{a}e^{-t}}{t-ix}\,\mathrm{d}t\right]^{n}\\ &=\frac{2i}{\left[\Gamma{\left(a\right)}\right]^{n}}\int_{-\infty}^{\infty}\mathrm{d}x\,\frac{\left(bx-i\right)e^{i\left(n-b\right)x}}{x^{2}+\epsilon^{2}}\prod_{k=1}^{n}\int_{0}^{\infty}\mathrm{d}t_{k}\,\frac{t_{k}^{a}e^{-t_{k}}}{t_{k}-ix}\\ &=\small{\frac{2i}{\left[\Gamma{\left(a\right)}\right]^{n}}\int_{-\infty}^{\infty}\mathrm{d}x\,\frac{\left(bx-i\right)e^{i\left(n-b\right)x}}{x^{2}+\epsilon^{2}}\int_{[0,\infty)^{n}}\mathrm{d}^{n}\mathbf{t}\,e^{-\sum_{k=1}^{n}t_{k}}\prod_{k=1}^{n}\left(\frac{t_{k}^{a}}{t_{k}-ix}\right)}\\ &=\small{\frac{2i}{\left[\Gamma{\left(a\right)}\right]^{n}}\int_{[0,\infty)^{n}}\mathrm{d}^{n}\mathbf{t}\,\left(\prod_{k=1}^{n}t_{k}^{a}\right)e^{-\sum_{k=1}^{n}t_{k}}\int_{-\infty}^{\infty}\mathrm{d}x\,\frac{\left(bx-i\right)e^{i\left(n-b\right)x}}{\left(x^{2}+\epsilon^{2}\right)\prod_{k=1}^{n}\left(t_{k}-ix\right)}}\\ &=\small{\frac{2i}{\left[\Gamma{\left(a\right)}\right]^{n}}\int_{[0,\infty)^{n}}\mathrm{d}^{n}\mathbf{t}\,\frac{\left(\prod_{k=1}^{n}t_{k}^{a}\right)}{\exp{\left(\sum_{k=1}^{n}t_{k}\right)}}\int_{-\infty}^{\infty}\mathrm{d}x\,\frac{\left(-bx-i\right)e^{-i\left(n-b\right)x}}{\left(x^{2}+\epsilon^{2}\right)\prod_{k=1}^{n}\left(t_{k}+ix\right)}}\\ &=:\frac{2i}{\left[\Gamma{\left(a\right)}\right]^{n}}\int_{[0,\infty)^{n}}\mathrm{d}^{n}\mathbf{t}\,\frac{\left(\prod_{k=1}^{n}t_{k}^{a}\right)}{\exp{\left(\sum_{k=1}^{n}t_{k}\right)}}\,f_{n}{\left(b;\epsilon\right)},\\ \end{align}$$
donde para $n\in\mathbb{N}^{+}\land b,\epsilon\in\mathbb{R}\land1\le b\le n\land0<\epsilon$ hemos definido la función auxiliar que denota la integración más interna,
$$f_{n}{\left(b;\epsilon\right)}:=\int_{-\infty}^{\infty}\mathrm{d}x\,\frac{\left(-bx-i\right)e^{-i\left(n-b\right)x}}{\left(x^{2}+\epsilon^{2}\right)\prod_{k=1}^{n}\left(t_{k}+ix\right)}.$$
Para la integración sobre $x$ Apelaré a una proposición muy adecuada de la obra de Gradshteyn Tablas . Por lo general, intento que mis artículos sean lo más autónomos posible, demostrando los lemas no triviales que pienso utilizar, en lugar de tomar el camino más perezoso y citar simplemente el resultado de una fuente externa. Pero no puedo resistirme a hacerlo, en parte por pereza, pero sobre todo para mostrar cómo Gradshteyn puede ser en ocasiones extrañamente clarividente.
Gradshteyn 3.386: Dadas las condiciones $$-1<\Re{\left(\nu_{0}\right)}\land0<\Re{\left(\beta_{k}\right)}\land\sum_{k=0}^{n}\Re{\left(\nu_{k}\right)}<1\land0<p,$$ tenemos los dos resultados siguientes: $$\int_{-\infty}^{\infty}\frac{\left(ix\right)^{\nu_{0}}e^{-ipx}\prod_{k=1}^{n}\left(\beta_{k}+ix\right)^{\nu_{k}}}{\beta_{0}-ix}\mathrm{d}x=2\pi e^{-\beta_{0}p}\beta_{0}^{\nu_{0}}\prod_{k=1}^{n}\left(\beta_{0}+\beta_{k}\right)^{\nu_{k}},$$ y $$\int_{-\infty}^{\infty}\frac{\left(ix\right)^{\nu_{0}}e^{-ipx}\prod_{k=1}^{n}\left(\beta_{k}+ix\right)^{\nu_{k}}}{\beta_{0}+ix}\mathrm{d}x=0.$$
La siguiente descomposición parcial de la fracción se verifica fácilmente:
$$\frac{-bx-i}{x^{2}+\epsilon^{2}}=\frac{1}{2i\epsilon}\left[\frac{\left(1-b\epsilon\right)}{\epsilon-ix}+\frac{\left(1+b\epsilon\right)}{\epsilon+ix}\right].$$
Entonces, asumiendo $0<\Re{\left(t_{k}\right)}\land b<n$ ,
$$\begin{align} f_{n}{\left(b;\epsilon\right)} &=\int_{-\infty}^{\infty}\mathrm{d}x\,\frac{\left(-bx-i\right)e^{-i\left(n-b\right)x}}{\left(x^{2}+\epsilon^{2}\right)\prod_{k=1}^{n}\left(t_{k}+ix\right)}\\ &=\int_{-\infty}^{\infty}\mathrm{d}x\,\frac{1}{2i\epsilon}\left[\frac{\left(1-b\epsilon\right)}{\epsilon-ix}+\frac{\left(1+b\epsilon\right)}{\epsilon+ix}\right]\frac{e^{-i\left(n-b\right)x}}{\prod_{k=1}^{n}\left(t_{k}+ix\right)}\\ &=\frac{1-b\epsilon}{2i\epsilon}\int_{-\infty}^{\infty}\mathrm{d}x\,\frac{e^{-i\left(n-b\right)x}}{\left(\epsilon-ix\right)\prod_{k=1}^{n}\left(t_{k}+ix\right)}\\ &~+\frac{1+b\epsilon}{2i\epsilon}\int_{-\infty}^{\infty}\mathrm{d}x\,\frac{e^{-i\left(n-b\right)x}}{\left(\epsilon+ix\right)\prod_{k=1}^{n}\left(t_{k}+ix\right)}\\ &=\frac{1-b\epsilon}{2i\epsilon}\cdot\frac{2\pi e^{-\left(n-b\right)\epsilon}}{\prod_{k=1}^{n}\left(\epsilon+t_{k}\right)}.\\ \end{align}$$
Así,
$$\begin{align} I_{n}{\left(a,b;\epsilon\right)} &=\frac{2i}{\left[\Gamma{\left(a\right)}\right]^{n}}\int_{[0,\infty)^{n}}\mathrm{d}^{n}\mathbf{t}\,\frac{\left(\prod_{k=1}^{n}t_{k}^{a}\right)}{\exp{\left(\sum_{k=1}^{n}t_{k}\right)}}\,f_{n}{\left(b;\epsilon\right)}\\ &=\frac{2\pi\left(1-b\epsilon\right)e^{-\left(n-b\right)\epsilon}}{\left[\Gamma{\left(a\right)}\right]^{n}\epsilon}\int_{[0,\infty)^{n}}\mathrm{d}^{n}\mathbf{t}\,\frac{\left(\prod_{k=1}^{n}t_{k}^{a}\right)}{\exp{\left(\sum_{k=1}^{n}t_{k}\right)}}\cdot\frac{1}{\prod_{k=1}^{n}\left(\epsilon+t_{k}\right)}\\ &=\frac{2\pi\left(1-b\epsilon\right)e^{-\left(n-b\right)\epsilon}}{\left[\Gamma{\left(a\right)}\right]^{n}\epsilon}\int_{[0,\infty)^{n}}\mathrm{d}^{n}\mathbf{t}\,\prod_{k=1}^{n}\left(\frac{t_{k}^{a}e^{-t_{k}}}{\epsilon+t_{k}}\right)\\ &=\frac{2\pi\left(1-b\epsilon\right)e^{-\left(n-b\right)\epsilon}}{\left[\Gamma{\left(a\right)}\right]^{n}\epsilon}\left[\int_{0}^{\infty}\mathrm{d}t\,\left(\frac{t^{a}e^{-t}}{\epsilon+t}\right)\right]^{n}\\ &=\frac{2\pi\left(1-b\epsilon\right)e^{-\left(n-b\right)\epsilon}}{\left[\Gamma{\left(a\right)}\right]^{n}\epsilon}\left[\epsilon^{a}e^{\epsilon}\,\Gamma{\left(1+a\right)}\,\Gamma{\left(-a,\epsilon\right)}\right]^{n}\\ &=2\pi a^{n}\left(1-b\epsilon\right)\epsilon^{na-1}e^{b\epsilon}\left[\Gamma{\left(-a,\epsilon\right)}\right]^{n}.\\ \end{align}$$