Digamos que tenemos esto:
model2 <- lmer(milk.amount~(1|cow), data=milk, REML=FALSE)
model1 <- lmer(milk.amount~(1|cow), data=milk)
summary(model2)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: milk.amount ~ (1 | cow)
Data: milk
AIC BIC logLik deviance df.resid
186.5 191.6 -90.2 180.5 37
Scaled residuals:
Min 1Q Median 3Q Max
-2.0244 -0.4104 0.1795 0.6621 1.3879
Random effects:
Groups Name Variance Std.Dev.
cow (Intercept) 6.755 2.599
Residual 2.999 1.732
Number of obs: 40, groups: cow, 10
Fixed effects:
Estimate Std. Error t value
(Intercept) 27.0150 0.8663 31.18
entonces
summary(model1)
Linear mixed model fit by REML ['lmerMod']
Formula: milk.amount ~ (1 | cow)
Data: milk
REML criterion at convergence: 178.9
Scaled residuals:
Min 1Q Median 3Q Max
-1.9981 -0.4136 0.1775 0.6561 1.4021
Random effects:
Groups Name Variance Std.Dev.
cow (Intercept) 7.589 2.755
Residual 3.000 1.732
Number of obs: 40, groups: cow, 10
Fixed effects:
Estimate Std. Error t value
(Intercept) 27.0150 0.9132 29.58
¿Por qué el modelo 1 (con REML) no muestra los coeficientes AIC, BIC, logLik, desviación? ¿Es posible que se deba a algún tipo de dependencia del software?