Bueno, en general:
$$\mathscr{L}_\text{s}^{-1}\left[\frac{1}{\text{s}}\cdot\text{F}\left(\text{s}\right)\right]_{\left(t\right)}=\int_0^t\text{f}\left(\tau\right)\space\text{d}\tau\tag1$$
Así que, tenemos:
$$\text{f}\left(t\right):=\mathscr{L}_\text{s}^{-1}\left[\frac{2}{\text{s}\cdot\left(1-e^{-2\pi\text{s}}\right)}\right]_{\left(t\right)}=\mathscr{L}_\text{s}^{-1}\left[\frac{1}{\text{s}}\cdot\frac{2}{1-e^{-2\pi\text{s}}}\right]_{\left(t\right)}=$$ $$\int_0^t\mathscr{L}_\text{s}^{-1}\left[\frac{2}{1-e^{-2\pi\text{s}}}\right]_{\left(\tau\right)}\space\text{d}\tau=2\int_0^t\mathscr{L}_\text{s}^{-1}\left[\frac{1}{1-e^{-2\pi\text{s}}}\right]_{\left(\tau\right)}\space\text{d}\tau\tag2$$
Ahora, podemos usar:
$$\frac{1}{1-x}=\sum_{\text{n}=0}^\infty x^\text{n}\tag3$$
Lorsque $\left|x\right|<1$
Así que:
$$\text{f}\left(t\right)=2\int_0^t\mathscr{L}_\text{s}^{-1}\left[\sum_{\text{n}=0}^\infty\left(e^{-2\pi\text{s}}\right)^\text{n}\right]_{\left(\tau\right)}\space\text{d}\tau=2\int_0^t\mathscr{L}_\text{s}^{-1}\left[\sum_{\text{n}=0}^\infty e^{-2\pi\text{s}\text{n}}\right]_{\left(\tau\right)}\space\text{d}\tau=$$ $$2\int_0^t\sum_{\text{n}=0}^\infty\mathscr{L}_\text{s}^{-1}\left[e^{-2\pi\text{s}\text{n}}\right]_{\left(\tau\right)}\space\text{d}\tau=2\sum_{\text{n}=0}^\infty\int_0^t\mathscr{L}_\text{s}^{-1}\left[e^{-2\pi\text{s}\text{n}}\right]_{\left(\tau\right)}\space\text{d}\tau\tag4$$
Ahora, la transformada inversa de laplace de $e^{-2\pi\text{s}\text{n}}$ es:
$$\mathscr{L}_\text{s}^{-1}\left[e^{-2\pi\text{s}\text{n}}\right]_{\left(\tau\right)}=\delta\left(\tau-2\pi\text{n}\right)\tag5$$
Así que, tenemos:
$$\text{f}\left(t\right)=2\sum_{\text{n}=0}^\infty\int_0^t\delta\left(\tau-2\pi\text{n}\right)\space\text{d}\tau=2\sum_{\text{n}=0}^\infty\left[\theta\left(\tau-2\pi\text{n}\right)\right]_0^t=$$ $$2\sum_{\text{n}=0}^\infty\left(\theta\left(t-2\pi\text{n}\right)-\theta\left(0-2\pi\text{n}\right)\right)=2\sum_{\text{n}=0}^\infty\theta\left(t-2\pi\text{n}\right)\tag6$$