Dejemos que $X(t, t_0)$ sea una matriz de solución fundamental para el sistema
$\dot{\vec x}(t) = A(t) \vec x(t), \tag 1$
con
$A^T(t) = -A(t); \tag 2$
entonces $X(t, t_0)$ es una función de matriz cuadrada de $t$ y fijamos
$n = \text{size} \; X(t, t_0) = \text{size} \; A(t); \tag 3$
las columnas de $X(t, t_0)$ son $n \times 1$ matrices "vectores columna" $\vec x(t)$ cada uno de los cuales satisface (1); de ello se deduce fácilmente que
$\dot X(t, t_0) = A(t) X(t, t_0), \tag 4$
desde $A(t)$ actúa sobre $X(t, t_0)$ columna por columna. Podemos transponer esta ecuación y obtener
$\dot {X^T}(t, t_0) = X^T(t, t_0)A^T(t); \tag 5$
a continuación consideramos $X^T(t, t_0) X(t, t_0)$ tenemos
$\dfrac{d}{dt}(X^T(t, t_0) X(t, t_0)) = (X^T(t, t_0) X(t, t_0))'$ $= \dot {X^T}(t, t_0) X(t, t_0) + X^T(t, t_0) \dot X(t, t_0)$ $= X^T(t, t_0)A^T(t) X(t, t_0) + X^T(t, t_0)A(t)X(t, t_0) = X^T(t, t_0)(A^T(t) + A(t))X(t, t_0); \tag 6$
se ve así que en el caso de que (2) se vincule, y así
$A^T(t) + A(t) = 0, \tag 7$
que (6) implica
$\dfrac{d}{dt}(X^T(t, t_0) X(t, t_0)) = X^T(t, t_0)(A^T(t) + A(t))X(t, t_0)$ $= X^T(t, t_0)(0)X(t, t_0) = 0; \tag 8$
de lo que deducimos que $X^T(t, t_0)X(t, t_0)$ es de hecho una matriz constante:
$X^T(t, t_0)X(t, t_0) = X^T(t_0, t_0)X(t_0, t_0), \; \forall t \in I; \tag 9$
ahora supongamos que
$X(t_0, t_0) = I, \tag{10}$
cuyas columnas corresponden a los $n$ vectores vectores de tamaño $n$ :
$\vec x_1(t_0) = (1, 0, \ldots, 0)^T, \tag{11}$
$\vec x_2(t_0) = (0, 1, \ldots, 0)^T, \tag{12}$
$\vdots \tag{13}$
$\vec x_n(t_0) = (0, 0, \ldots, 1)^T; \tag{14}$
que pueden servir como condiciones iniciales para $n$ soluciones linealmente independientes de (1); entonces
$X^T(t, t_0)X(t, t_0) = I, \tag{15}$
es decir, $X(t, t_0)$ es una matriz ortogonal para todo $t \in I$ .
A la inversa, dado que (15) se vincula, encontramos al diferenciar con respecto a $t$ que
$\dot {X^T}(t, t_0) X(t, t_0) + X^T(t, t_0) \dot X(t, t_0) = 0, \tag{16}$
para que a la luz de (4) y (5)
$X^T(t, t_0)A^T(t)X(t, t_0) + X^T(t, t_0)A(t)X(t, t_0) = 0, \tag{17}$
o
$X^T(t, t_0)(A^T(t) + A(t))X(t, t_0) = 0; \tag{18}$
de acuerdo con (9), tanto $X^T(t, t_0)$ y $X(t, t_0)$ son no singulares; por lo tanto
$A^T(t) + A(t) = 0, \tag{19}$
es decir, (2) también es válida.
Hay algunas aplicaciones especiales de estos resultados que merecen ser mencionadas; por ejemplo, si $\vec x(t)$ satisface (1)-(2), entonces
$\dfrac{d}{dt}\langle \vec x(t), \vec x(t) \rangle = \langle \dot{\vec x}(t), \vec x(t) \rangle + \langle \vec x(t), \dot{\vec x}(t) \rangle = \langle A(t)\vec x(t), \vec x(t) \rangle + \langle \vec x(t), A(t) \vec x(t) \rangle$ $= \langle \vec x(t), A^T(t) \vec x(t) \rangle + \langle \vec x(t), A(t) \vec x(t) \rangle = \langle \vec x(t), A^T(t) \vec x(t) + A(t) \vec x(t) \rangle$ $= \langle \vec x(t), -A(t) \vec x(t) + A(t) \vec x(t) \rangle = \langle \vec x(t), 0 \rangle = 0, \tag{20}$
que muestra que $\langle \vec x(t), \vec x(t) \rangle$ es constante.
Del mismo modo, podemos dar un paso más y escribir
$\dfrac{d}{dt}\langle \vec x(t), \vec y(t) \rangle = \langle \dot{\vec x}(t), \vec y(t) \rangle + \langle \vec x(t), \dot{\vec y}(t) \rangle = \langle A(t)\vec x(t), \vec y(t) \rangle + \langle \vec x(t), A(t) \vec y(t) \rangle$ $= \langle \vec x(t), A^T(t) \vec y(t) \rangle + \langle \vec x(t), A(t) \vec y(t) \rangle = \langle \vec x(t), A^T(t) \vec y(t) + A(t) \vec y(t) \rangle$ $= \langle \vec x(t), -A(t) \vec y(t) + A(t) \vec y(t) \rangle = \langle \vec x(t), 0 \rangle = 0, \tag{21}$
lo que demuestra que los productos internos se conservan bajo el flujo de (1)-(2). Obviamente (20) es un caso especial de (21) con $\vec y(t) = \vec x(t)$ .
(20) y (21) también se deducen directamente de (10) y (15), viz tenemos
$\vec x(t) = X(t, t_0) \vec x(t_0), \tag{22}$
$\vec y(t) = X(t, t_0) \vec y(t_0); \tag{23}$
así,
$\langle \vec x(t), \vec y(t) \rangle = \langle X(t, t_0)\vec x(t_0), X(t, t_0) \vec y(t) \rangle = \langle \vec x(t_0), X^T(t, t_0) X(t, t_0) \vec y(t_0) \rangle$ $= \langle \vec x(t_0), I\vec y(t_0) \rangle = \langle \vec x(t_0), \vec y(t_0) \rangle, \tag{24}$
y por supuesto tomando $\vec y(t) = \vec x(t)$ rinde
$\langle \vec x(t), \vec x(t) \rangle = \langle \vec x(t_0), \vec x(t_0) \rangle; \tag{25}$
no es una gran sorpresa.
También observamos que, de acuerdo con (6), $(X^T(t, t_0)X(t, t_0))'$ depende no sólo de $X(t, t_0)$ sino también en $A_\Sigma(t)$ la parte simétrica de $A(t)$ :
$A_\Sigma(t) = \dfrac{A(t) + A^T(t)}{2}; \tag{26}$
la parte simétrica de $A(t)$ desaparece cuando (2) o (7) se unen; es decir, cuando $A(t)$ es simétrica.
Por último, en el caso de que (10) no se aplique pero que las columnas de $X^T(t_0, t_0)$ siguen siendo linealmente independientes, seguimos teniendo (9) con $X^T(t_0, t_0)X(t_0, t_0)$ simétrica definida positiva, que puede ser diagonalizada por alguna matriz ortogonal $C$ , dando lugar a
$C^TX^T(t_0, t_0)X(t_0, t_0)C = \text{diag}(\mu_1, \mu_2, \ldots, \mu_n), \tag{27}$
de donde
$X^T(t_0, t_0)X(t_0, t_0) = C\text{diag}(\mu_1, \mu_2, \ldots, \mu_n)C^T, \tag{28}$
con
$\mu_i > 0, \; 1 \le \mu_i \le n. \tag{29}$
Observamos que (27) implica además
$\text{diag}(\mu_1^{-1/2}, \mu_2^{-1/2}, \ldots, \mu_n^{-1/2})C^TX^T(t_0, t_0)$ $\cdot X(t_0, t_0)C\text{diag}(\mu_1^{-1/2}, \mu_2^{-1/2}, \ldots, \mu_n^{-1/2})$ $= \text{diag}(\mu_1^{-1/2}, \mu_2^{-1/2}, \ldots, \mu_n^{-1/2})$ $\cdot \text{diag}(\mu_1, \mu_2, \ldots, \mu_n)\text{diag}(\mu_1^{-1/2}, \mu_2^{-1/2}, \ldots, \mu_n^{-1/2}) = I, \tag{30}$
es decir, $X(t_0, t_0)C\text{diag}(\mu_1^{-1/2}, \mu_2^{-1/2}, \ldots, \mu_n^{-1/2})$ es ortogonal. Además, tenemos la ecuación
$\dfrac{d}{dt}(\text{diag}(\mu_1^{-1/2}, \mu_2^{-1/2}, \ldots, \mu_n^{-1/2})C^TX^T(t, t_0) X(t, t_0)C\text{diag}(\mu_1^{-1/2}, \mu_2^{-1/2}, \ldots, \mu_n^{-1/2})) = (\text{diag}(\mu_1^{-1/2}, \mu_2^{-1/2}, \ldots, \mu_n^{-1/2})C^TX^T(t, t_0) X(t, t_0)C\text{diag}(\mu_1^{-1/2}, \mu_2^{-1/2}, \ldots, \mu_n^{-1/2}))' = \text{diag}(\mu_1^{-1/2}, \mu_2^{-1/2}, \ldots, \mu_n^{-1/2})C^T\dot {X^T}(t, t_0) X(t, t_0)C\text{diag}(\mu_1^{-1/2}, \mu_2^{-1/2}, \ldots, \mu_n^{-1/2}) + \text{diag}(\mu_1^{-1/2}, \mu_2^{-1/2}, \ldots, \mu_n^{-1/2})C^TX^T(t, t_0) \dot X(t, t_0)C\text{diag}(\mu_1^{-1/2}, \mu_2^{-1/2}, \ldots, \mu_n^{-1/2})$ $= \text{diag}(\mu_1^{-1/2}, \mu_2^{-1/2}, \ldots, \mu_n^{-1/2})C^TX^T(t, t_0)A^T(t) X(t, t_0)C\text{diag}(\mu_1^{-1/2}, \mu_2^{-1/2}, \ldots, \mu_n^{-1/2}) + \text{diag}(\mu_1^{-1/2}, \mu_2^{-1/2}, \ldots, \mu_n^{-1/2})C^TX^T(t, t_0)A(t)X(t, t_0)C\text{diag}(\mu_1^{-1/2}, \mu_2^{-1/2}, \ldots, \mu_n^{-1/2}) = \text{diag}(\mu_1^{-1/2}, \mu_2^{-1/2}, \ldots, \mu_n^{-1/2})C^TX^T(t, t_0)(A^T(t) + A(t))X(t, t_0)C\text{diag}(\mu_1^{-1/2}, \mu_2^{-1/2}, \ldots, \mu_n^{-1/2}) = 0; \tag{31}$
La combinación de (30) y (31) muestra que
$\text{diag}(\mu_1^{-1/2}, \mu_2^{-1/2}, \ldots, \mu_n^{-1/2})C^TX^T(t, t_0)$ $\cdot X(t, t_0)C\text{diag}(\mu_1^{-1/2}, \mu_2^{-1/2}, \ldots, \mu_n^{-1/2})$ $= \text{diag}(\mu_1^{-1/2}, \mu_2^{-1/2}, \ldots, \mu_n^{-1/2})$ $\cdot \text{diag}(\mu_1, \mu_2, \ldots, \mu_n)\text{diag}(\mu_1^{-1/2}, \mu_2^{-1/2}, \ldots, \mu_n^{-1/2}) = I, \tag{32}$
es decir, $X(t, t_0)C\text{diag}(\mu_1^{-1/2}, \mu_2^{-1/2}, \ldots, \mu_n^{-1/2})$ es ortogonal para todo $t$ . Estas consideraciones indican que el mapa
$X(t, t_0) \to X(t, t_0)C\text{diag}(\mu_1^{-1/2}, \mu_2^{-1/2}, \ldots, \mu_n^{-1/2}) \tag{33}$
transforma cualquier matriz fundamental de solución en una ortogonal, con filas y columnas ortonormales. Aplicado a $X(t_0, t_0)$ (33) dice
$X(t_0, t_0) \to X(t_0, t_0)C\text{diag}(\mu_1^{-1/2}, \mu_2^{-1/2}, \ldots, \mu_n^{-1/2}), \tag{34}$
donde $X(t_0, t_0)C\text{diag}(\mu_1^{-1/2}, \mu_2^{-1/2}, \ldots, \mu_n^{-1/2})$ es ortogonal. Como esta matriz es ortogonal, tenemos
$X(t_0, t_0)C\text{diag}(\mu_1^{-1/2}, \mu_2^{-1/2}, \ldots, \mu_n^{-1/2})$ $\cdot (X(t_0, t_0)C\text{diag}(\mu_1^{-1/2}, \mu_2^{-1/2}, \ldots, \mu_n^{-1/2}))^T = I, \tag{35}$
y
$(X(t_0, t_0)C\text{diag}(\mu_1^{-1/2}, \mu_2^{-1/2}, \ldots, \mu_n^{-1/2}))^T$ $\cdot X(t_0, t_0)C\text{diag}(\mu_1^{-1/2}, \mu_2^{-1/2}, \ldots, \mu_n^{-1/2}) = I. \tag{36}$
Observamos que (35) también puede derivarse directamente de (28) como sigue:
$X(t_0, t_0)C\text{diag}(\mu_1^{-1/2}, \mu_2^{-1/2}, \ldots, \mu_n^{-1/2})$ $\cdot (X(t_0, t_0)C\text{diag}(\mu_1^{-1/2}, \mu_2^{-1/2}, \ldots, \mu_n^{-1/2}))^T = X(t_0, t_0)C\text{diag}(\mu_1^{-1/2}, \mu_2^{-1/2}, \ldots, \mu_n^{-1/2}) \cdot \text{diag}(\mu_1^{-1/2}, \mu_2^{-1/2}, \ldots, \mu_n^{-1/2})C^T X^T(t_0, t_0)$ $= X(t_0, t_0)C\text{diag}(\mu_1^{-1}, \mu_2^{-1}, \ldots, \mu_n^{-1}) C^T X^T(t_0, t_0); \tag{37}$
invirtiendo (28) y recordando que $(C^T)^{-1} = C$ y $C^{-1} = C^T$ desde $C$ es ortogonal,
$X^{-1}(t_0, t_0)(X^T(t_0, t_0))^{-1} = C\text{diag}(\mu_1^{-1}, \mu_2^{-1}, \ldots, \mu_n^{-1})C^T, \tag{38}$
y sustituyendo esto en (37) vemos que
$X(t_0, t_0)C\text{diag}(\mu_1^{-1/2}, \mu_2^{-1/2}, \ldots, \mu_n^{-1/2})$ $\cdot (X(t_0, t_0)C\text{diag}(\mu_1^{-1/2}, \mu_2^{-1/2}, \ldots, \mu_n^{-1/2}))^T= X(t_0, t_0)X^{-1}(t_0, t_0)(X^T(t_0, t_0))^{-1} X^T(t_0, t_0) = I. \tag{39}$
Es algo más fácil de ver (36), pues
$(X(t_0, t_0)C\text{diag}(\mu_1^{-1/2}, \mu_2^{-1/2}, \ldots, \mu_n^{-1/2}))^T$ $\cdot X(t_0, t_0)C\text{diag}(\mu_1^{-1/2}, \mu_2^{-1/2}, \ldots, \mu_n^{-1/2}) $ $= \text{diag}(\mu_1^{-1/2}, \mu_2^{-1/2}, \ldots, \mu_n^{-1/2})C^TX^T(t_0, t_0)$ $\cdot X(t_0, t_0)C\text{diag}(\mu_1^{-1/2}, \mu_2^{-1/2}, \ldots, \mu_n^{-1/2}) = I, \tag{40}$
y a través de (27) esto se convierte en
$(X(t_0, t_0)C\text{diag}(\mu_1^{-1/2}, \mu_2^{-1/2}, \ldots, \mu_n^{-1/2}))^T$ $\cdot X(t_0, t_0)C\text{diag}(\mu_1^{-1/2}, \mu_2^{-1/2}, \ldots, \mu_n^{-1/2})$ $= \text{diag}(\mu_1^{-1/2}, \mu_2^{-1/2}, \ldots, \mu_n^{-1/2})$ $\cdot \text{diag}(\mu_1, \mu_2, \ldots, \mu_n)\text{diag}(\mu_1^{-1/2}, \mu_2^{-1/2}, \ldots, \mu_n^{-1/2}) = I. \tag{41}$
Para terminar, respetamos la interpretación geométrica de estos resultados; en particular, (20)-(21) y así sucesivamente muestran que sistemas como (1)-(2) preservan los productos internos y, por tanto, las magnitudes y los ángulos entre vectores en $\Bbb R^n$ . Esta visión de las cosas encuentra aplicación en otras situaciones, por ejemplo al considerar las tramas de Frenet-Serret de las curvas en el espacio euclidiano tridimensional, y también en dimensiones superiores.
Nota Bene, jueves 17 de julio de 2020 2:59 PM PST: Unas palabras para aclarar algunos aspectos de la discusión anterior. Hemos afirmado que (20), (21) se deducen directamente de (10), (15) a través de (22) y (23). Ampliamos estas observaciones observando que (10) da lugar a las identidades
$\vec x(t_0) = X(t_0, t_0) \vec x(t_0), \tag{42}$
$\vec y(t_0) = X(t_0, t_0) \vec y(t_0), \tag{43}$
y multiplicando a la derecha (4) por $\vec x(t_0)$ , $\vec y(t_0)$ obtenemos
$\dot X(t, t_0)\vec x(t_0) = A(t) X(t, t_0)\vec x(t_0), \tag{44}$
$\dot X(t, t_0)\vec y(t_0) = A(t) X(t, t_0)\vec y(t_0); \tag{45}$
desde $\vec x(t)$ y $\vec y(t)$ satisfacen cada una de ellas (1), como muestran (44) y (45) $X(t, t_0)\vec x(t_0)$ , $X(t, t_0)\vec y(t_0)$ también, vemos que $\vec x(t)$ y $X(t, t_0)\vec x(t_0)$ y $\vec y(t)$ , $X(t, t_0) \vec y(t_0)$ satisfacen la(s) misma(s) ecuación(es) (1), (44)-(45) con las mismas condiciones iniciales (42)-(43), por lo tanto por unicidad de soluciones de ecuaciones diferenciales ordinarias,
$\vec x(t) = X(t, t_0)x(t_0), \tag{46}$
y
$\vec y(t) = X(t, t_0)y(t_0), \tag{47}$
Fin de la nota.