Una base de $F$ en $\mathbb{Q}$ es $\;\left\{1,\sqrt{2},\sqrt{3},\sqrt{6}\right\},$ en efecto, para cualquier elemento $\;x\in F\;$ existe $\;r_1,\;r_2,\;r_3,\;r_4,\;r_5,\;r_6,\;r_7,\;r_8\in\mathbb{Q}\;$ tal que
\begin{align} x&=\dfrac{r_1+r_2\sqrt{2}+r_3\sqrt{3}+r_4\sqrt{6}}{r_5+r_6\sqrt{2}+r_7\sqrt{3}+r_8\sqrt{6}}\\ &=\dfrac{r_1+r_2\sqrt{2}+r_3\sqrt{3}+r_4\sqrt{6}}{r_5+r_6\sqrt{2}+r_7\sqrt{3}+r_8\sqrt{6}}\cdot\dfrac{r_5+r_6\sqrt{2}-r_7\sqrt{3}-r_8\sqrt{6}}{r_5+r_6\sqrt{2}-r_7\sqrt{3}-r_8\sqrt{6}}\\ &=\dfrac{\left(r_1+r_2\sqrt{2}+r_3\sqrt{3}+r_4\sqrt{6}\right)\left(r_5+r_6\sqrt{2}-r_7\sqrt{3}-r_8\sqrt{6}\right)}{\left(r_5+r_6\sqrt{2}\right)^2-\left(r_7\sqrt{3}+r_8\sqrt{6}\right)^2}\\ &=\dfrac{s_1+s_2\sqrt{2}+s_3\sqrt{3}+s_4\sqrt{6}}{s_5+s_6\sqrt{2}}\\ &=\dfrac{s_1+s_2\sqrt{2}+s_3\sqrt{3}+s_4\sqrt{6}}{s_5+s_6\sqrt{2}}\cdot\dfrac{s_5-s_6\sqrt{2}}{s_5-s_6\sqrt{2}}\\ &=\dfrac{\left(s_1+s_2\sqrt{2}+s_3\sqrt{3}+s_4\sqrt{6}\right)\left(s_5-s_6\sqrt{2}\right)}{\left(s_5+s_6\sqrt{2}\right)\left(s_5-s_6\sqrt{2}\right)}\\ &=q_11+q_2\sqrt{2}+q_3\sqrt{3}+q_4\sqrt{6} \end{align}
donde $\;q_1,\;q_2,\;q_3,\;q_4\in\mathbb{Q}\;$ .