64 votos

¿Qué es la impedancia?

Esto se presenta como un recurso para la comunidad y una experiencia de aprendizaje para mí. Tengo los conocimientos suficientes sobre el tema como para meterme en líos, pero no tengo el mejor conocimiento de los detalles del tema. Algunas respuestas útiles podrían ser:

  • Explicación de los componentes de la impedancia
  • Cómo interactúan esos componentes
  • ¿Cómo se pueden transformar las impedancias
  • Cómo se relaciona esto con los filtros de RF, las fuentes de alimentación y todo lo demás...

Gracias por la ayuda.

53voto

Colin Pickard Puntos 161

A la pregunta "¿qué es la impedancia?", yo señalaría que la impedancia es un concepto amplio de la física en general, del que la impedancia eléctrica es sólo un ejemplo.

Para entender lo que significa y cómo funciona, suele ser más fácil considerar la impedancia mecánica. Piensa en intentar empujar (deslizar) un sofá pesado por el suelo.
Aplicas una determinada fuerza y el sofá se desliza a una determinada velocidad, dependiendo de la fuerza con la que empujes, el peso del sofá, el tipo de superficie del suelo, el tipo de pies que tenga el sofá, etc. Para esta situación, es posible definir una impedancia mecánica que da la relación entre la fuerza con la que empujas y la velocidad con la que se desliza el sofá.

En realidad, se parece mucho a un circuito eléctrico de corriente continua, en el que se aplica una determinada cantidad de tensión a través de un circuito, y la corriente fluye a una determinada velocidad correspondiente a través de él.

Tanto en el caso del sofá como en el del circuito, la respuesta a tu entrada puede ser simple y bastante lineal: una resistencia que obedece a la Ley de Ohm, donde su impedancia eléctrica es sólo la resistencia, y el sofá puede tener pies deslizantes de fricción que le permiten moverse con una velocidad proporcional a tu fuerza.*

Los circuitos y los sistemas mecánicos también pueden ser no lineales. Si el circuito consiste en una tensión variable colocada a través de una resistencia en serie con un diodo, la corriente será casi nula hasta que se supere la tensión directa del diodo, momento en el que la corriente comenzará a fluir a través de la resistencia, de acuerdo con la ley de Ohm. Del mismo modo, un sofá sentado en el suelo suele tener cierto grado de fricción estática: no empezará a moverse hasta que se empuje con una cierta fuerza inicial. Ni en el sistema mecánico ni en el eléctrico hay una única impedancia lineal que pueda definirse. Más bien, lo mejor que se puede hacer es definir por separado las impedancias en diferentes condiciones. (El mundo real es mucho más parecido a esto).

Incluso cuando las cosas son muy claras y lineales, es importante tener en cuenta que la impedancia sólo describe una relación, no describe los límites del sistema, y no es "mala". Definitivamente, puedes obtener toda la corriente/velocidad que quieras (en un sistema ideal) añadiendo más voltaje/empujando más fuerte.

Los sistemas mecánicos también pueden dar una idea bastante buena de la impedancia de la corriente alterna. Imagina que vas en bicicleta. Con cada medio ciclo de los pedales, empujas a la izquierda, empujas a la derecha. También puedes imaginar que pedaleas con un solo pie y una pinza, de forma que empujas y tiras con cada ciclo del pedal. Esto se parece mucho a la aplicación de un voltaje de corriente alterna a un circuito: se empuja y se tira a su vez, cíclicamente, a una determinada frecuencia.

Si la frecuencia es lo suficientemente lenta, como cuando estás parado en la bicicleta, el problema de empujar los pedales hacia abajo es sólo un problema de "dc", como empujar el sofá. Sin embargo, cuando se acelera, las cosas pueden actuar de forma diferente.

Supongamos que vas en bicicleta a cierta velocidad y que tu bicicleta es de tres velocidades con relaciones de cambio bajas, medias y altas. La relación media se siente natural, la alta es difícil de aplicar la fuerza suficiente para hacer alguna diferencia, y en la relación baja, sólo giras los pedales sin transferir ninguna energía a las ruedas. Esto es una cuestión de adaptación de la impedancia En este caso, sólo se puede transferir eficazmente la potencia a las ruedas cuando éstas presentan una cierta resistencia física al pie, ni demasiado ni demasiado poco. El fenómeno eléctrico correspondiente también es muy común; se necesitan líneas de impedancia adaptada para transmitir eficazmente la potencia de radiofrecuencia del punto A al punto B, y cada vez que se conectan dos líneas de transmisión, habrá alguna pérdida en la interfaz.

La resistencia que ofrecen los pedales a tus pies es proporcional a la fuerza con la que pisas, lo que lo relaciona más con una resistencia simple, sobre todo a bajas velocidades. Incluso en los circuitos de corriente alterna, una resistencia se comporta como una resistencia (hasta cierto punto).

Sin embargo, a diferencia de una resistencia, la impedancia de una bicicleta depende de la frecuencia. Supongamos que pones la bicicleta en una marcha alta, partiendo de una parada. Puede ser très difícil de empezar. Pero, una vez que empiezas, la impedancia presentada por los pedales disminuye a medida que vas más rápido, y una vez que vas muy rápido, puedes encontrar que los pedales presentan muy poca impedancia para absorber la energía de tus pies. Así que en realidad hay una impedancia que depende de la frecuencia (a reactancia ) que comienza alto y se va reduciendo a medida que se avanza en la frecuencia.

Esto es muy parecido al comportamiento de un condensador, y un modelo bastante bueno para la impedancia mecánica de una bicicleta sería una resistencia en paralelo con un condensador.

En corriente continua (velocidad cero), sólo ves la resistencia alta y constante como tu impedancia. A medida que la frecuencia de pedaleo aumenta, la impedancia del condensador se vuelve más baja que la de la resistencia, y permite que la corriente fluya en esa dirección.

Hay, por supuesto, otros componentes eléctricos y sus analogías mecánicas**, pero esta discusión debería darte una intuición inicial sobre el concepto general para que tengas los pies en la tierra (juego de palabras) mientras aprendes sobre los aspectos matemáticos de lo que a veces puede parecer un tema muy abstracto.

*Una palabra para los quisquillosos: la ley de Ohm nunca es exacta para un dispositivo real, y las fuerzas de fricción del mundo real nunca dan una velocidad exactamente proporcional a la fuerza. Sin embargo, "bastante lineal" es fácil. Estoy tratando de ser todo educativo y esas cosas aquí. No me hagas caso.

**Por ejemplo, un inductor es algo así como un rodillo con muelle en la rueda que añade resistencia a medida que se llega a una frecuencia más alta)

23voto

La impedancia de un elemento del circuito es la relación entre la tensión y la corriente en ese elemento.

Tensiones y corrientes constantes

Para tensiones y corrientes constantes, la impedancia es sólo resistencia. Una resistencia es un dispositivo que mantiene la misma relación entre la tensión y la corriente, incluso cuando la tensión cambia. Son lineales: si se duplica la tensión, también se duplica la corriente. Si se dibuja un gráfico de la tensión frente a la corriente, la pendiente sería la impedancia.

Un condensador, que es como dos placas metálicas, actúa como un circuito abierto para corrientes y tensiones constantes. Un inductor, es decir, un cable rizado, actúa como un cortocircuito para corrientes y tensiones constantes.

(En realidad, no es tan limpio. Las resistencias tienden a dejar pasar menos corriente de la que deberían cuando se calientan. Los condensadores dejan pasar un poco de corriente, incluso cuando no deberían. Los inductores tienen una pequeña resistencia, como cualquier cable normal).

Tensiones y corrientes que cambian con el tiempo

Aquí es donde la cosa se pone más interesante. Algunos elementos del circuito, como los condensadores y los inductores, permiten que fluya más o menos corriente en función de la frecuencia de la tensión a la que están sometidos. Se podría pensar en ellos como resistencias dependientes de la frecuencia. La parte de la impedancia que depende de la frecuencia se llama reactancia. Si se suman la reactancia y la resistencia, se obtiene la impedancia.

Ejemplos de reactancia

Supongamos que tienes una caja que genera ondas sinusoidales de amplitud 120 V. Ajustas la caja para 60 ciclos por segundo y conectas la señal de la caja a través de un condensador de 0,1 F. La corriente que fluye será una onda sinusoidal a la misma frecuencia. La corriente será:

I = V * 2 * pi * frecuencia * C

I = 120 * 2 * 3,14 * 60 * 0,1 = 4522 amperios.

(En realidad, tanta corriente haría explotar el condensador).

Si se duplica la frecuencia de la onda sinusoidal, la corriente se duplicará. Este tipo de comportamiento es útil en los filtros RC: se pueden hacer circuitos que tengan una alta resistencia a una frecuencia, pero una baja resistencia a otra, lo que permite, por ejemplo, distinguir una señal entre el ruido.

Un inductor se comporta de forma similar, pero al aumentar la frecuencia, la impedancia aumenta en lugar de disminuir.

El mundo real

En realidad, todo tiene algo de resistencia y de reactancia (un poco de capacitancia o de inductancia, pero no ambas). Además, todos los circuitos tienen no linealidades, como la dependencia de la temperatura o efectos geométricos que los hacen desviarse del modelo ideal.

Además, las tensiones y corrientes con las que tratamos nunca son ondas sinusoidales perfectas: son una mezcla de frecuencias.

Por ejemplo, suponga que está ejecutando un solenoide para abrir una cerradura de puerta, como los timbres de los edificios de apartamentos. El solenoide es un enorme inductor que crea un campo magnético que hace retroceder un pestillo contra la fuerza de un muelle. Cuando apagas el solenoide, haces que la corriente cambie drásticamente con el tiempo. Al intentar que la corriente baje rápidamente, la inductancia del solenoide hace que la tensión suba rápidamente.

Por eso se ve lo que se llama un "diodo flyback" en paralelo con grandes inductores - para permitir que la corriente caiga más lentamente, evitando el pico de tensión causado por un cambio de alta frecuencia.

El siguiente paso

A partir de aquí, el siguiente paso es aprender a modelar circuitos construidos con múltiples elementos reactivos (por ejemplo, un montón de resistencias y condensadores). Para ello, tenemos que seguir no sólo las amplitudes de la tensión y la corriente, sino también el desplazamiento de fase entre ellas: los picos de las ondas sinusoidales no se alinean en el tiempo.

(Desgraciadamente, tengo que ponerme a trabajar aquí, así que tendré que dejaros este enlace: http://www.usna.edu/MathDept/CDP/ComplexNum/Module_6/ComplexPhasors.htm )

18voto

Lehane Puntos 6776

La impedancia es una extensión del concepto de resistencia que incluye los efectos de la capacitancia y la inductancia. Los inductores y los condensadores tienen "reactancia", y la impedancia es la combinación de los efectos de la resistencia y la reactancia.

Presentación de n00b: Esencialmente, te permite pensar en los condensadores e inductores como si fueran resistencias, haciendo los cálculos más sencillos e intuitivos. Por ejemplo, si sabes cómo calcular la salida de un divisor de tensión puramente resistivo:

alt text

entonces también se puede calcular la magnitud de la salida de un filtro RC a una frecuencia determinada:

alt text

Digamos que R es de 1 kΩ y C de 1 uF, por ejemplo, y quieres saber la tensión de salida si introduces una onda sinusoidal a 160 Hz. La reactancia del condensador a 160 Hz tiene una magnitud de aproximadamente 1 kΩ Por lo tanto, ambas "resistencias" son iguales, y el voltaje a través de cada una será el mismo. Sin embargo, cada componente tiene 0,707 de la tensión de entrada a través de él, no 0,5, como en el caso resistivo.

En otras frecuencias, la magnitud de la reactancia del condensador sería diferente, por lo que el filtro responde de forma diferente a distintas frecuencias. También puedes trabajar con números imaginarios para calcular el desplazamiento de fase en la salida, pero a menudo la magnitud es la única parte que te interesa.

2voto

Alex Andronov Puntos 178

La analogía mecánica que me gusta para la impedancia es un muelle que cuelga verticalmente con una colección de pesas colgando. Si el sistema está inicialmente inmóvil y se da una breve sacudida hacia arriba al peso de la parte superior, devolviéndolo rápidamente a su posición original, la perturbación se desplazará hacia abajo por el muelle. Cada peso será tirado hacia arriba por el peso de arriba, luego empujará hacia arriba el peso de arriba (y será empujado hacia abajo por él) mientras tira hacia arriba del peso de abajo (y es tirado hacia abajo por él), y finalmente será empujado hacia arriba por el peso de abajo. Una vez que todas estas cosas han sucedido, el peso volverá a su posición original y a su velocidad (cero).

Nótese que el comportamiento de la onda que se propaga hacia abajo no depende de nada que esté por debajo de ella. Sin embargo, una vez que la onda llega al fondo, puede ocurrir una de estas tres cosas, dependiendo de si el extremo del muelle está colgando, fijado rígidamente a algo, o fijado a algo que pueda moverse con cierta resistencia.

Si el extremo del muelle está colgando, el peso inferior no tendrá nada debajo para tirar de él cuando se sacuda hacia arriba. El efecto de esto será que el peso se sacudirá hacia arriba más de lo que lo haría de otra manera, y más de lo que el peso de arriba estaría esperando para cancelar su energía. Esto, a su vez, hará que la pesa empuje hacia arriba a la pesa de arriba, y generará una onda de desplazamiento hacia arriba que será (sin pérdidas por fricción) de igual magnitud que la onda inicial hacia abajo. La dirección del desplazamiento será la misma que la de la onda original (es decir, hacia arriba), pero el esfuerzo será opuesto (la onda original era de tensión; el rebote será de compresión).

Por el contrario, si el extremo del muelle es fijo, el peso inferior se encontrará con que el muelle que está por debajo resiste más de lo esperado. Por tanto, el peso del fondo no se desplazará hacia arriba tanto como esperaba el peso de arriba, y el efecto neto será como si el fondo diera un "tirón" extra, enviando una onda hacia arriba. La dirección de desplazamiento de esta onda será la opuesta a la onda original (es decir, hacia abajo), pero la tensión será la misma (compresión).

Si la parte inferior del muelle está sujeta a algo que se mueve un poco, pero no tanto como un muelle colgante, los dos comportamientos anteriores pueden anularse en cierta medida. Si se permite que la parte inferior del muelle se mueva lo justo, los comportamientos se anularán y la onda desaparecerá. De lo contrario, uno u otro tipo de onda rebotará, pero la magnitud será generalmente menor de lo que sería con un extremo colgante o fijo. La cantidad de resistencia requerida está efectivamente definida por la impedancia, que es a su vez una función de la masa de las pesas y de la constante de resorte de los muelles.

Obsérvese que este modelo recoge muchos comportamientos relacionados con la impedancia. Por ejemplo, si todos los pesos por encima de un determinado punto pesan 100g mientras que los que están por debajo pesan 200g, y todos los resortes son iguales, la transición de los pesos más ligeros a los más pesados hará que parte de la energía de la ola se refleje hacia arriba (de manera similar al extremo inferior fijo) ya que los pesos más pesados no se moverán tanto como se espera. La noción clave es que para que las cosas que son empujadas vuelvan a la velocidad cero, deben transferir tanto su energía cinética como su momento. Si pueden transferir su energía y su momento a algo con las mismas características que lo que les ha empujado, aceptarán toda la energía y el momento y los transmitirán. En caso contrario, tendrán que devolver parte de la energía y/o del momento.

2voto

Ahe Puntos 1347

Limitaré mi respuesta al ámbito eléctrico. La impedancia (Z) es literalmente sólo V/I. Así de sencillo. Pero "eso" no es tan sencillo en todos los casos. Empecemos por lo más sencillo y vayamos subiendo.

Si la impedancia es una resistencia simple y V es una tensión continua (frecuencia = f = 0), podemos reescribir Z=V/I para que sea R=V/I.

Si la impedancia se debe a un tapón o a un inductor, la impedancia depende de la frecuencia.

Si las frecuencias se elevan lo suficiente como para que los componentes no aparezcan como elementos agrupados, entonces la impedancia no sólo depende de la frecuencia, sino también de la ubicación. A veces, estos elementos están diseñados para estar distribuidos (por ejemplo, guías de ondas, antenas y ondas EM en el espacio libre), y otras veces no.

La herramienta general que se ha desarrollado para representar estos efectos de alta frecuencia en el tiempo y el espacio (1 dimensión) es Z=V/I. Pero tanto 'V' como 'I' son cantidades vectoriales complejas de la forma (A)(e)^(j(wt+x)), donde j=SQRT(-1), 'A' es una constante, 'e' es la base del logaritmo natural, 'w' es la frecuencia en radianes/segundo, 't' es el tiempo en segundos, y 'x' es la distancia a lo largo de la trayectoria 1-D. Dado que "Z" es un cociente de estos dos vectores complejos, también es un vector complejo que varía en el tiempo y en el espacio. El ingeniero eléctrico manipula estas cantidades para el tiempo y la ubicación deseados, y luego toma la parte real de V o I (o Z) para obtener lo que se observa en el mundo real.

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X