$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\pars}[1]{\left(\, #1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$ $\ds{\int_{0}^{1}{1 - t \over \pars{t - 2}\ln\pars{t}}\,\dd t \approx 0.507834: \ {\large ?}}$ .
Consideremos $$ {\cal F}\pars{\mu}\equiv \int_{0}^{1}{1 - t^{\mu} \over \pars{t - 2}\ln\pars{t}}\,\dd t\,,\qquad\qquad \left\lbrace\begin{array}{rcl} {\cal F}\pars{1} & = & {\large ?} \\[1mm] {\cal F}\pars{0} & = & 0 \end{array}\right. $$
\begin{align} {\cal F}'\pars{\mu}& =\int_{0}^{1}{-t^{\mu}\ln\pars{t} \over \pars{t - 2}\ln\pars{t}}\,\dd t =\int_{0}^{1}{t^{\mu} \over 2 - t}\,\dd t =\half\sum_{n = 1}^{\infty}\int_{0}^{1/2}t^{\mu + n - 1}\pars{1/2}^{n - 1}\,\dd t \\[3mm]&=\sum_{n = 1}^{\infty}{\pars{1/2}^{n} \over \mu + n} \end{align}
\begin{align} \int_{0}^{1}{1 - t \over \pars{t - 2}\ln\pars{t}}\,\dd t&={\cal F}\pars{1} =\int_{0}^{1}{\cal F}'\pars{\mu}\,\dd\mu =\sum_{n = 1}^{\infty}\pars{\half}^{n}\bracks{\ln\pars{1 + n} - \ln\pars{n}} \\[3mm]&=\sum_{n = 2}^{\infty}\pars{\half}^{n - 1}\ln\pars{n} -\sum_{n = 1}^{\infty}\pars{\half}^{n}\ln\pars{n} =\sum_{n = 1}^{\infty}2^{-n}\ln\pars{n} \end{align}
También $\ds{\pars{~\mbox{with}\ \verts{z} < 1~}}$ , $$ \partiald{{\rm Li_{s}}\pars{z}}{\rm s} =\partiald{\sum_{n = 1}^{\infty}z^{n}/n^{\rm s}}{\rm s} =-\sum_{n = 1}^{\infty}{z^{n} \over n^{\rm s}}\,\ln\pars{n} $$ tal que $$\color{#66f}{\large% \int_{0}^{1}{1 - t \over \pars{t - 2}\ln\pars{t}}\,\dd t =-\lim_{{\rm s}\ \to\ 0}\partiald{{\rm Li_{s}}\pars{1/2}}{\rm s}} \approx {\tt 0.5078} $$