$$\frac{1}{1-x^2}$$
$$\frac{1}{1-x^2}=\frac{a}{1-x}+\frac{b}{1+x}$$
$$1=a+ax+b-bx$$
$$1=a+b+x(a-b)$$
$a+b=1$ y $x(a-b)=0\Rightarrow a-b=0\Rightarrow a=b$
$$2a=1\Rightarrow a=\frac{1}{2}$$
$b=\frac{1}{2}$
$$\frac{1}{1-x^2}=\frac{1}{2(1-x)}+\frac{1}{2(1+x)}$$
¿En qué me he equivocado?